Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Prof. Patrick Irwin

Professor of Planetary Physics

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Planetary atmosphere observation analysis
  • Solar system
patrick.irwin@physics.ox.ac.uk
Telephone: 01865 (2)72083
Atmospheric Physics Clarendon Laboratory, room 306
Personal research page
NEMESIS
  • About
  • Publications

A brightening of Jupiter’s auroral 7.80-μm CH4 emission during a solar-wind compression

Nature Astronomy Nature Research 3:2019 (2019) 607-613

Authors:

J Sinclair, G Orton, J Fernandes, Y Kasaba, T Sato, T Fujiyoshi, C Tao, F Vogt, G Grodent, B Bonfond, J Moses, T Greathouse, W Dunn, R Giles, F Tabataba-Vakili, L Fletcher, Patrick Irwin

Abstract:

Enhanced mid-infrared emission from CH4 and other stratospheric hydrocarbons has been observed coincident with Jupiter’s ultraviolet auroral emission1,2,3. This suggests that auroral processes and the neutral stratosphere of Jupiter are coupled; however, the exact nature of this coupling is unknown. Here we present a time series of Subaru-COMICS images of Jupiter measured at a wavelength of 7.80 μm on 11–14 January, 4–5 February and 17–20 May 2017. These data show that both the morphology and magnitude of the auroral CH4 emission vary on daily timescales in relation to external solar-wind conditions. The southern auroral CH4 emission increased in brightness temperature by about 3.8 K between 15:50 UT, 11 January and 12:57 UT, 12 January, during a predicted solar-wind compression. During the same compression, the northern auroral emission exhibited a duskside brightening, which mimics the morphology observed in the ultraviolet auroral emission during periods of enhanced solar-wind pressure4,5. These results suggest that changes in external solar-wind conditions perturb the Jovian magnetosphere in such a way that energetic particles are accelerated into the planet’s atmosphere, deposit their energy as deep as the neutral stratosphere, and modify the thermal structure, the abundance of CH4 or the population of energy states of CH4. We also find that the northern and southern auroral CH4 emission evolved independently between the January, February and May images, as has been observed at X-ray wavelengths over shorter timescales6 and at mid-infrared wavelengths over longer timescales7.
More details from the publisher
Details from ORA
More details

Ethane in Titan's Stratosphere from Cassini CIRS Far- and Mid-infrared Spectra

ASTRONOMICAL JOURNAL 157:4 (2019) ARTN 160

Authors:

Nicholas A Lombardo, Conor A Nixon, Melody Sylvestre, Donald E Jennings, Nicholas Teanby, Patrick JG Irwin, F Michael Flasar
More details from the publisher
Details from ORA
More details

Corrigendum to “Neptune's carbon monoxide profile and phosphine upper limits from Herschel/SPIRE” (Icarus, vol 319, p86–98, 2019) (Icarus (2019) 319 (86–98), (S0019103518304457), (10.1016/j.icarus.2018.09.014))

Icarus 322 (2019) 261-261

Authors:

NA Teanby, PGJ Irwin, JI Moses

Abstract:

© 2018 The authors would like to publish the below information which was incorrectly published in its original version. Page 90: The equation for saturation vapour pressure should be PSVP(T) =exp(a+b/T +cT). Page92: TheD/HratiomeasuredbyFeuchtgruberetal.(2013)fromHerschelPACSshouldbe 4.1±0.4×10−5. References Feuchtgruber, H., Lellouch, E., Orton, G., de Graauw, T., Vandenbussche, B., Swinyard, B., Moreno, R., Jarchow, C., Billebaud, F., Cavali´e, T., Sidher, S., Hartogh, P., 2013. The D/H ratio in the atmospheres of Uranus and Neptune from Herschel-PACS observations. Astron. Astrophys. 551, 1–9.
More details from the publisher
Details from ORA

Seasonal Evolution of Titan's Stratosphere During the Cassini Mission

GEOPHYSICAL RESEARCH LETTERS 46:6 (2019) 3079-3089

Authors:

NA Teanby, M Sylvestre, J Sharkey, CA Nixon, S Vinatier, PGJ Irwin
More details from the publisher
Details from ORA
More details
More details

Jupiter's auroral-related stratospheric heating and chemistry III: Abundances of C 2 H 4 , CH 3 C 2 H, C 4 H 2 and C 6 H 6 from Voyager-IRIS and Cassini-CIRS

Icarus 328 (2019) 176-193

Authors:

JA Sinclair, JI Moses, V Hue, TK Greathouse, GS Orton, LN Fletcher, PGJ Irwin

Abstract:

© 2019 Elsevier Inc. We present an analysis of Voyager-1-IRIS and Cassini-CIRS spectra of Jupiter's high latitudes acquired during the spacecrafts' respective flybys in November 1979 and January 2001. We performed a forward-model analysis in order to derive the abundances of ethylene (C 2 H 4 ), methylacetylene (CH 3 C 2 H), diacetylene (C 4 H 2 ) and benzene (C 6 H 6 ) in Jupiter's northern and southern auroral regions. We also compared these abundances to: 1) lower-latitude abundances predicted by the Moses et al. (2005) ‘Model A’ photochemical model, henceforth ‘Moses 2005A’, and 2) abundances derived at non-auroral longitudes in the same latitude band. This paper serves as an extension of Sinclair et al. (2017b), where we retrieved the vertical profiles of temperature, C 2 H 2 and C 2 H 6 from similar datasets. We find that an enrichment of C 2 H 4 , CH 3 C 2 H and C 6 H 6 with respect to lower-latitude abundances is required to fit the spectra of Jupiter's northern and southern auroral regions. For example, for CIRS 0.5 cm −1 spectra of Jupiter's southern auroral region, scale factor enrichments of 6.40 −1.15+1.30 and 9.60 −3.67+3.98 are required with respect to the Moses 2005A vertical profiles of C 2 H 4 and C 6 H 6 , respectively, in order to fit the spectral emission features of these species at ∼950 and ∼674 cm −1 . Similarly, in order to fit the CIRS 2.5 cm −1 spectra of Jupiter's northern auroral region, scale factor enrichments of 1.60 −0.21+0.37 , 3.40 −1.69+1.89 and 15.00 −4.02+4.01 with respect to the Moses 2005A vertical profiles of C 2 H 4 , CH 3 C 2 H and C 6 H 6 were required, respectively. Outside of Jupiter's auroral region in the same latitude bands, only upper-limit abundances of C 2 H 4 , CH 3 C 2 H and C 6 H 6 could be determined due to the limited sensitivity of the measurements, the weaker emission features combined with cooler stratospheric temperatures (and therefore decreased thermal emission) of these regions. Nevertheless, for a subset of the observations, derived abundances of C 2 H 4 and C 6 H 6 in Jupiter's auroral regions were higher (by 1 σ) with respect to upper-limit abundances derived outside the auroral region in the same latitude band. This is suggestive that the influx of energetic ions and electrons from the Jovian magnetosphere and external solar-wind environment into the neutral atmosphere in Jupiter's auroral regions drives enhanced ion-related chemistry, as has also been inferred from Cassini observations of Saturn's high latitudes (Fletcher et al., 2018; Guerlet et al., 2015; Koskinen et al., 2016). We were not able to constrain the abundance of C 4 H 2 in either Jupiter's auroral regions or non-auroral regions due to its lower (predicted) abundance and weaker emission feature. Thus, only upper-limit abundances were derived in both locations. From CIRS 2.5 cm −1 spectra, the upper limit abundance of C 4 H 2 corresponds to a scale factor enhancement of 45.6 and 23.8 with respect to the Moses 2005A vertical profile in Jupiter's non-auroral and auroral regions.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • Current page 31
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet