Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Juno Jupiter image

Prof. Patrick Irwin

Professor of Planetary Physics

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Planetary atmosphere observation analysis
  • Solar system
patrick.irwin@physics.ox.ac.uk
Telephone: 01865 (2)72083
Atmospheric Physics Clarendon Laboratory, room 306
Personal research page
NEMESIS
Github data sharing website
  • About
  • Publications

Latitudinal variation in the abundance of methane (CH4) above the clouds in Neptune's atmosphere from VLT/MUSE Narrow Field Mode Observations

(2019)

Authors:

Patrick GJ Irwin, Daniel Toledo, Ashwin S Braude, Roland Bacon, Peter M Weilbacher, Nicholas A Teanby, Leigh N Fletcher, Glenn S Orton
More details from the publisher

A brightening of Jupiter’s auroral 7.80-μm CH4 emission during a solar-wind compression

Nature Astronomy Nature Research 3:2019 (2019) 607-613

Authors:

J Sinclair, G Orton, J Fernandes, Y Kasaba, T Sato, T Fujiyoshi, C Tao, F Vogt, G Grodent, B Bonfond, J Moses, T Greathouse, W Dunn, R Giles, F Tabataba-Vakili, L Fletcher, Patrick Irwin

Abstract:

Enhanced mid-infrared emission from CH4 and other stratospheric hydrocarbons has been observed coincident with Jupiter’s ultraviolet auroral emission1,2,3. This suggests that auroral processes and the neutral stratosphere of Jupiter are coupled; however, the exact nature of this coupling is unknown. Here we present a time series of Subaru-COMICS images of Jupiter measured at a wavelength of 7.80 μm on 11–14 January, 4–5 February and 17–20 May 2017. These data show that both the morphology and magnitude of the auroral CH4 emission vary on daily timescales in relation to external solar-wind conditions. The southern auroral CH4 emission increased in brightness temperature by about 3.8 K between 15:50 UT, 11 January and 12:57 UT, 12 January, during a predicted solar-wind compression. During the same compression, the northern auroral emission exhibited a duskside brightening, which mimics the morphology observed in the ultraviolet auroral emission during periods of enhanced solar-wind pressure4,5. These results suggest that changes in external solar-wind conditions perturb the Jovian magnetosphere in such a way that energetic particles are accelerated into the planet’s atmosphere, deposit their energy as deep as the neutral stratosphere, and modify the thermal structure, the abundance of CH4 or the population of energy states of CH4. We also find that the northern and southern auroral CH4 emission evolved independently between the January, February and May images, as has been observed at X-ray wavelengths over shorter timescales6 and at mid-infrared wavelengths over longer timescales7.
More details from the publisher
Details from ORA
More details

Ethane in Titan's Stratosphere from Cassini CIRS Far- and Mid-infrared Spectra

ASTRONOMICAL JOURNAL 157:4 (2019) ARTN 160

Authors:

Nicholas A Lombardo, Conor A Nixon, Melody Sylvestre, Donald E Jennings, Nicholas Teanby, Patrick JG Irwin, F Michael Flasar
More details from the publisher
Details from ORA
More details

Corrigendum to “Neptune's carbon monoxide profile and phosphine upper limits from Herschel/SPIRE” (Icarus, vol 319, p86–98, 2019) (Icarus (2019) 319 (86–98), (S0019103518304457), (10.1016/j.icarus.2018.09.014))

Icarus 322 (2019) 261-261

Authors:

NA Teanby, PGJ Irwin, JI Moses

Abstract:

© 2018 The authors would like to publish the below information which was incorrectly published in its original version. Page 90: The equation for saturation vapour pressure should be PSVP(T) =exp(a+b/T +cT). Page92: TheD/HratiomeasuredbyFeuchtgruberetal.(2013)fromHerschelPACSshouldbe 4.1±0.4×10−5. References Feuchtgruber, H., Lellouch, E., Orton, G., de Graauw, T., Vandenbussche, B., Swinyard, B., Moreno, R., Jarchow, C., Billebaud, F., Cavali´e, T., Sidher, S., Hartogh, P., 2013. The D/H ratio in the atmospheres of Uranus and Neptune from Herschel-PACS observations. Astron. Astrophys. 551, 1–9.
More details from the publisher

Seasonal Evolution of Titan's Stratosphere During the Cassini Mission

GEOPHYSICAL RESEARCH LETTERS 46:6 (2019) 3079-3089

Authors:

NA Teanby, M Sylvestre, J Sharkey, CA Nixon, S Vinatier, PGJ Irwin
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • Current page 34
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet