Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Prof. Patrick Irwin

Professor of Planetary Physics

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Planetary atmosphere observation analysis
  • Solar system
patrick.irwin@physics.ox.ac.uk
Telephone: 01865 (2)72083
Atmospheric Physics Clarendon Laboratory, room 306
Personal research page
NEMESIS
  • About
  • Publications

Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season

Science American Association for the Advancement of Science (AAAS) (2020) eaay9522-eaay9522

Authors:

Anna A Fedorova, Franck Montmessin, Oleg Korablev, Mikhail Luginin, Alexander Trokhimovskiy, Denis A Belyaev, Nikolay I Ignatiev, Franck Lefèvre, Juan Alday, Patrick GJ Irwin, Kevin S Olsen, Jean-Loup Bertaux, Ehouarn Millour, Anni Määttänen, Alexey Shakun, Alexey V Grigoriev, Andrey Patrakeev, Svyatoslav Korsa, Nikita Kokonkov, Lucio Baggio, Francois Forget, Colin F Wilson

Abstract:

The loss of water from Mars to space is thought to result from the transport of water to the upper atmosphere, where it is dissociated to hydrogen and escapes the planet. Recent observations have suggested large, rapid seasonal intrusions of water into the upper atmosphere, boosting the hydrogen abundance. We use the Atmospheric Chemistry Suite on the ExoMars Trace Gas Orbiter to characterize the water distribution by altitude. Water profiles during the 2018–2019 southern spring and summer stormy seasons show that high-altitude water is preferentially supplied close to perihelion, and supersaturation occurs even when clouds are present. This implies that the potential for water to escape from Mars is higher than previously thought.
More details from the publisher
Details from ORA
More details
More details

Towards the analysis of JWST exoplanet spectra: the effective temperature in the context of direct imaging

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 490:2 (2019) 2086-2090

Authors:

Jean-Loup Baudino, J Taylor, PGJ Irwin, R Garland

Abstract:

ABSTRACT The current sparse wavelength range coverage of exoplanet direct imaging observations, and the fact that models are defined using a finite wavelength range, lead both to uncertainties on effective temperature determination. We study these effects using blackbodies and atmospheric models and we detail how to infer this parameter. Through highlighting the key wavelength coverage that allows for a more accurate representation of the effective temperature, our analysis can be used to mitigate or manage extra uncertainties being added in the analysis from the models. We find that the wavelength range coverage will soon no longer be a problem. An effective temperature computed by integrating the spectroscopic observations of the James Webb Space Telescope will give uncertainties similar to, or better than, the current state–of–the–art, which is to fit models to data. Accurately calculating the effective temperature will help to improve current modelling approaches. Obtaining an independent and precise estimation of this crucial parameter will help the benchmarking process to identify the best practice to model exoplanet atmospheres.
More details from the publisher
Details from ORA
More details

Constraints on Uranus's haze structure, formation and transport

Icarus Elsevier BV 333 (2019) 1-11

Authors:

Daniel Toledo, Patrick GJ Irwin, Pascal Rannou, Nicholas A Teanby, Amy A Simon, Michael H Wong, Glenn S Orton
More details from the publisher
Details from ORA
More details

Mapping the zonal structure of Titan’s northern polar vortex

Icarus Elsevier 337 (2019) 113441

Authors:

J Sharkey, N Teanby, M Sylvestre, D Mitchell, W Seviour, C Nixon, Patrick Irwin

Abstract:

Saturn exhibits an obliquity of 26.7° such that the largest moon, Titan, experiences seasonal variations including the formation of a polar vortex in the winter hemisphere. Titan's polar vortex is characterised by cold stratospheric temperatures due to the lack of insolation over the winter pole, and an increase in trace gas abundance as a result of complex organic chemistry in the upper atmosphere combined with polar subsidence. Meridional variations in temperature and gas abundance across the vortex have previously been investigated, but there has not yet been any in-depth study of the zonal variations in the temperature or composition of the northern vortex. Here we present the first comprehensive two-dimensional seasonal mapping of Titan's northern winter vortex. Using 18 nadir mapping sequences observed by the Composite InfraRed Spectrometer (CIRS) instrument on-board Cassini, we investigate the evolution of the vortex over almost half a Titan year, from late winter through to mid summer (Ls = 326 − 86°, 2007–2017). We find the stratospheric symmetry axis to be tilted from the solid body rotation axis by around 3.5°, although our results for the azimuthal orientation of the tilt are inconclusive. We find that the northern vortex appears to remain zonally uniform in both temperature and composition at all times. A comparison with vortices observed on Earth, Mars, and Venus shows that large-scale wave mechanisms that are important on other terrestrial planets are not as significant in Titan's atmosphere. This allows the northern vortex to be more symmetrical and persist longer throughout the annual cycle compared to other terrestrial planets.
More details from the publisher
Details from ORA
More details

Toward the Analysis of JWST Exoplanet Spectra: the effective temperature in the context of direct imaging

(2019)

Authors:

Jean-Loup Baudino, J Taylor, PGJ Irwin, R Garland
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • Current page 32
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet