Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Prof. Patrick Irwin

Professor of Planetary Physics

Research theme

  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Planetary atmosphere observation analysis
  • Solar system
patrick.irwin@physics.ox.ac.uk
Telephone: 01865 (2)72083
Atmospheric Physics Clarendon Laboratory, room 306
Personal research page
NEMESIS
  • About
  • Publications

Analysis of gaseous ammonia (NH$_3$) absorption in the visible spectrum of Jupiter - Update

(2018)

Authors:

Patrick GJ Irwin, Neil Bowles, Ashwin S Braude, Ryan Garland, Simon Calcutt, Phillip A Coles, Sergey N Yurchenko, Jonathan Tennyson
More details from the publisher

Probable detection of hydrogen sulphide (H$_2$S) in Neptune's atmosphere

(2018)

Authors:

Patrick GJ Irwin, Daniel Toledo, Ryan Garland, Nicholas A Teanby, Leigh N Fletcher, Glenn S Orton, Bruno Bézard
More details from the publisher

Probable detection of hydrogen sulphide (H2S) in Neptune’s atmosphere

Icarus Elsevier 321 (2018) 550-563

Authors:

Patrick Irwin, Daniel Toledo, Ryan Garland, N Teanby, L Fletcher, G Orton, B Bezard

Abstract:

Recent analysis of Gemini-North/NIFS H-band (1.45–1.8 µm) observations of Uranus, recorded in 2010, with recently updated line data has revealed the spectral signature of hydrogen sulphide (H2S) in Uranus’s atmosphere (Irwin et al., 2018). Here, we extend this analysis to Gemini-North/NIFS observations of Neptune recorded in 2009 and find a similar detection of H2S spectral absorption features in the 1.57–1.58 µm range, albeit slightly less evident, and retrieve a mole fraction of -1 - 3 ppm at the cloud tops. We find a much clearer detection (and much higher retrieved column abundance above the clouds) at southern polar latitudes compared with equatorial latitudes, which suggests a higher relative humidity of H2S here. We find our retrieved H2S abundances are most consistent with atmospheric models that have reduced methane abundance near Neptune’s south pole, consistent with HST/STIS determinations (Karkoschka and Tomasko, 2011). We also conducted a Principal Component Analysis (PCA) of the Neptune and Uranus data and found that in the 1.57–1.60 µm range, some of the Empirical Orthogonal Functions (EOFs) mapped closely to physically significant quantities, with one being strongly correlated with the modelled H2S signal and clearly mapping the spatial dependence of its spectral detectability. Just as for Uranus, the detection of H2S at the cloud tops constrains the deep bulk sulphur/nitrogen abundance to exceed unity (i.e. >4.4 -5.0 times the solar value) in Neptune’s bulk atmosphere, provided that ammonia is not sequestered at great depths, and places a lower limit on its mole fraction below the observed cloud of (0.4–1.3) x10 -5 . The detection of gaseous H2S at these pressure levels adds to the weight of evidence that the principal constituent of the 2.5–3.5 bar cloud is likely to be H2S ice.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Abundance Measurements of Titan's Stratospheric HCN, HC$_3$N, C$_3$H$_4$, and CH$_3$CN from ALMA Observations

(2018)

Authors:

AE Thelen, CA Nixon, NJ Chanover, MA Cordiner, EM Molter, NA Teanby, PGJ Irwin, J Serigano, SB Charnley
More details from the publisher

Spatial Variations in Titan's Atmospheric Temperature: ALMA and Cassini Comparisons from 2012 to 2015

(2018)

Authors:

AE Thelen, CA Nixon, NJ Chanover, EM Molter, MA Cordiner, RK Achterberg, J Serigano, PGJ Irwin, NA Teanby, SB Charnley
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • Current page 37
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet