Spatial and seasonal variations in C_3/H_x hydrocarbon abundance in Titan's stratosphere from Cassini CIRS observations
Icarus 317 (2019) 454-469
Abstract:
© 2018 Of the C3Hxhydrocarbons, propane (C3H8) and propyne (methylacetylene, CH3C2H) were first detected in Titan's atmosphere during the Voyager 1 flyby in 1980. Propene (propylene, C3H6) was first detected in 2013 with data from the Composite InfraRed Spectrometer (CIRS) instrument on Cassini. We present the first measured abundance profiles of propene on Titan from radiative transfer modeling, and compare our measurements to predictions derived from several photochemical models. Near the equator, propene is observed to have a peak abundance of 10 ppbv at a pressure of 0.2 mbar. Several photochemical models predict the amount at this pressure to be in the range 0.3–1 ppbv and also show a local minimum near 0.2 mbar which we do not see in our measurements. We also see that propene follows a different latitudinal trend than the other C3molecules. While propane and propyne concentrate near the winter pole, transported via a global convective cell, propene is most abundant above the equator. We retrieve vertical abundances profiles between 125 km and 375 km for these gases for latitude averages between 60°S–20°S, 20°S–20°N, and 20°N–60°N over two time periods, 2004 through 2009 representing Titan's atmosphere before the 2009 equinox, and 2012 through 2015 representing time after the equinox. Additionally, using newly corrected line data, we determined an updated upper limit for allene (propadiene, CH2CCH2, the isomer of propyne). We claim a 3-σ upper limit mixing ratio of 2.5 × 10−9 within 30° of the equator. The measurements we present will further constrain photochemical models by refining reaction rates and the transport of these gases throughout Titan's atmosphere.Analysis of gaseous ammonia (NH$_3$) absorption in the visible spectrum of Jupiter - Update
(2018)
Probable detection of hydrogen sulphide (H$_2$S) in Neptune's atmosphere
(2018)
Probable detection of hydrogen sulphide (H2S) in Neptune’s atmosphere
Icarus Elsevier 321 (2018) 550-563
Abstract:
Recent analysis of Gemini-North/NIFS H-band (1.45–1.8 µm) observations of Uranus, recorded in 2010, with recently updated line data has revealed the spectral signature of hydrogen sulphide (H2S) in Uranus’s atmosphere (Irwin et al., 2018). Here, we extend this analysis to Gemini-North/NIFS observations of Neptune recorded in 2009 and find a similar detection of H2S spectral absorption features in the 1.57–1.58 µm range, albeit slightly less evident, and retrieve a mole fraction of -1 - 3 ppm at the cloud tops. We find a much clearer detection (and much higher retrieved column abundance above the clouds) at southern polar latitudes compared with equatorial latitudes, which suggests a higher relative humidity of H2S here. We find our retrieved H2S abundances are most consistent with atmospheric models that have reduced methane abundance near Neptune’s south pole, consistent with HST/STIS determinations (Karkoschka and Tomasko, 2011). We also conducted a Principal Component Analysis (PCA) of the Neptune and Uranus data and found that in the 1.57–1.60 µm range, some of the Empirical Orthogonal Functions (EOFs) mapped closely to physically significant quantities, with one being strongly correlated with the modelled H2S signal and clearly mapping the spatial dependence of its spectral detectability. Just as for Uranus, the detection of H2S at the cloud tops constrains the deep bulk sulphur/nitrogen abundance to exceed unity (i.e. >4.4 -5.0 times the solar value) in Neptune’s bulk atmosphere, provided that ammonia is not sequestered at great depths, and places a lower limit on its mole fraction below the observed cloud of (0.4–1.3) x10 -5 . The detection of gaseous H2S at these pressure levels adds to the weight of evidence that the principal constituent of the 2.5–3.5 bar cloud is likely to be H2S ice.Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter - Update
Icarus Elsevier 321 (2018) 572-582