Water vapor in Titan's stratosphere from Cassini CIRS far-infrared spectra
Icarus 220:2 (2012) 855-862
Abstract:
Here we report the measurement of water vapor in Titan's stratosphere using the Cassini Composite Infrared Spectrometer (CIRS, Flasar, F.M. et al. [2004]. Space Sci. Rev. 115, 169-297). CIRS senses water emissions in the far infrared spectral region near 50μm, which we have modeled using two independent radiative transfer codes (NEMESIS (Irwin, P.G.J. et al. [2008]. J. Quant. Spectrosc. Radiat. Trans. 109, 1136-1150) and ART (Coustenis, A. et al. [2007]. Icarus 189, 35-62; Coustenis, A. et al. [2010]. Icarus 207, 461-476). From the analysis of nadir spectra we have derived a mixing ratio of 0.14±0.05ppb at an altitude of 97km, which corresponds to an integrated (from 0 to 600km) surface normalized column abundance of 3.7±1.3×10 14molecules/cm 2. In the latitude range 80°S to 30°N we see no evidence for latitudinal variations in these abundances within the error bars. Using limb observations, we obtained mixing ratios of 0.13±0.04ppb at an altitude of 115km and 0.45±0.15ppb at an altitude of 230km, confirming that the water abundance has a positive vertical gradient as predicted by photochemical models (e.g. Lara, L.M., Lellouch, F., Lopez-Moreno, J.J., Rodrigo, R. [1996]. J. Geophys. Res. 101(23), 261; Wilson, E.H., Atreya, S.K. [2004]. J. Geophys. Res. 109, E6; Hörst, S.M., Vuitton, V., Yelle, R.V. [2008]. J. Geophys. Res., 113, E10). We have also fitted our data using scaling factors of ~0.1-0.6 to these photochemical model profiles, indicating that the models over-predict the water abundance in Titan's lower stratosphere. © 2012 Elsevier Inc..Investigation of new band parameters with temperature dependence for self-broadened methane gas in the range 9000 to 14,000cm -1 (0.71 to 1.1μm)
Journal of Quantitative Spectroscopy and Radiative Transfer 113:10 (2012) 763-782
Abstract:
This paper describes new measurements and modelling of the absorption of methane gas, one of the most important gases observed in the atmospheres of the outer planets and Titan, between 9000 and 14,000cm -1 (0.7 to 1.1μm) and compares them with current best available spectral models.A series of methane spectra were measured at the UK's Natural Environment Research Council (NERC) Molecular Spectroscopy Facility (based at the Rutherford Appleton Laboratory, Oxfordshire, UK) using a Brüker 125HR Fourier transform spectrometer. To approximate the conditions found in outer planet atmospheres, the spectra were measured over a wide range of pressures (5bar to 38mbar) and temperatures (290-100K) with path lengths of 19.3, 17.6, 16.0 and 14.4m. The spectra were recorded at a moderate resolution of 0.12cm -1 and then averaged to 10cm -1 resolution prior to fitting a series of increasingly complex band-models including temperature dependence. Using the most complex model, a Goody line distribution with a Voigt line shape and two lower energy state levels, the typical rms residual error in the fit is between 0.01 and 0.02 in the wings of the main absorption bands.The new spectral parameters were then compared with the measured spectra and spectra calculated using existing data and shown to be able to accurately reproduce the measured absorption. The improvement in the temperature dependence included in the model is demonstrated by comparison with existing cold methane spectral data for a typical Jovian path. © 2012 Elsevier Ltd.Observations of upper tropospheric acetylene on Saturn: No apparent correlation with 2000 km-sized thunderstorms
Planetary and Space Science 65:1 (2012) 21-37
Abstract:
Thunderstorm activity has been observed on Saturn via radio emissions from lightning discharges and optical detections of the lightning flashes on the planets nightside. Thunderstorms provide extreme environments in which specific atmospheric chemistry can be induced - namely through energy release via lightning discharges, and fast vertical transport resulting in rapid advection of tropospheric species. It is thus theorised that certain atmospheric trace species such as C 2H 2, HCN, and CO can be generated in the troposphere by large bursts of energy in the form of lightning, and transported upward towards the upper troposphere by the extreme dynamics of thunderstorms, where they should be observable by satellite instruments. In this work, high-spectral-resolution Cassini/CIRS observations from October 2005 through April 2009 are used to study whether there is an observable increase in upper tropospheric acetylene in regions of known normal thunderstorm activity. Using both individual measurements in which there is known thunderstorm activity, as well as large coadditions of data to study latitudinal-dependencies over the full disc, no systematic enhancement in upper tropospheric (100 mbar) C 2H 2 was detected around regions in which there are known occurrences of normally sized (2000 km) thunderstorms, or in normally sized thunderstorm-prone regions such as 40°S. It is likely that the magnitude of the enhancement theorised is too generous or that enhancements are not advected into the upper troposphere as vertical mixing rates in models would suggest, since Cassini/CIRS can only detect C 2H 2 above the 200 mbar level - although the massive northern hemisphere thunderstorm of 2010/2011 seems able to decrease stratospheric concentrations of C 2H 2. From this, it can be asserted that lightning from normal thunderstorm activity cannot be the key source for upper tropospheric C 2H 2 on Saturn, since the upper-tropospheric concentrations retrieved agree with the concentrations stemming from the photolysis of CH 4 (23 ppbv) from solar radiation penetrating through the Saturnian atmosphere, with an upper limit for lightning-induced C 2H 2 volume mixing ratio of 10 -9. © 2012 Elsevier Ltd. All rights reserved.Isotopic ratios in titan's methane: Measurements and modeling
Astrophysical Journal 749:2 (2012)
Abstract:
The existence of methane in Titan's atmosphere (∼6% level at the surface) presents a unique enigma, as photochemical models predict that the current inventory will be entirely depleted by photochemistry in a timescale of ∼20Myr. In this paper, we examine the clues available from isotopic ratios (12C/13C and D/H) in Titan's methane as to the past atmosphere history of this species. We first analyze recent infrared spectra of CH4 collected by the Cassini Composite Infrared Spectrometer, measuring simultaneously for the first time the abundances of all three detected minor isotopologues: 13CH4, 12CH3D, and 13CH3D. From these we compute estimates of 12C/13C= 86.5 ± 8.2 and D/H= (1.59 ± 0.33) × 10-4, in agreement with recent results from the Huygens GCMS and Cassini INMS instruments. We also use the transition state theory to estimate the fractionation that occurs in carbon and hydrogen during a critical reaction that plays a key role in the chemical depletion of Titan's methane: CH4+ C2H→ CH3+ C2H2. Using these new measurements and predictions we proceed to model the time evolution of 12C/13C and D/H in Titan's methane under several prototypical replenishment scenarios. In our Model1 (no resupply of CH4), we find that the present-day 12C/13C implies that the CH4 entered the atmosphere 60-1600Myr ago if methane is depleted by chemistry and photolysis alone, but much more recently - most likely less than 10Myr ago - if hydrodynamic escape is also occurring. On the other hand, if methane has been continuously supplied at the replenishment rate then the isotopic ratios provide no constraints, and likewise for the case where atmospheric methane is increasing. We conclude by discussing how these findings may be combined with other evidence to constrain the overall history of the atmospheric methane. © 2012 The American Astronomical Society. All rights reserved.Further seasonal changes in Uranus' cloud structure observed by Gemini-North and UKIRT
Icarus 218:1 (2012) 47-55