Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Representation of THz spectroscopy of a metamaterial with a Nanowire THz sensor

Representation of THz spectroscopy of a metamaterial with a Nanowire THz sensor

Credit: Rendering by Dimitars Jevtics

Prof Michael Johnston

Professor of Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Terahertz photonics
  • Advanced Device Concepts for Next-Generation Photovoltaics
michael.johnston@physics.ox.ac.uk
Johnston Group Website
  • About
  • Publications

Excitation-density-dependent generation of broadband terahertz radiation in an asymmetrically excited photoconductive antenna.

Opt Lett 32:16 (2007) 2297-2299

Authors:

Prashanth C Upadhya, Wenhui Fan, Andrew Burnett, John Cunningham, A Giles Davies, Edmund H Linfield, James Lloyd-Hughes, Enrique Castro-Camus, Michael B Johnston, Harvey Beere

Abstract:

The generation of terahertz (THz) transients in photoconductive emitters has been studied by varying the spatial extent and density of the optically excited photocarriers in asymmetrically excited, biased low-temperature-grown GaAs antenna structures. We find a pronounced dependence of the THz pulse intensity and broadband (>6.0 THz) spectral distribution on the pump excitation density and simulate this with a three-dimensional carrier dynamics model. We attribute the observed variation in THz emission to changes in the strength of the screening field.
More details from the publisher
More details

Transient terahertz conductivity of GaAs nanowires

Nano Letters 7:7 (2007) 2162-2165

Authors:

P Parkinson, J Lloyd-Hughes, Q Gao, HH Tan, C Jagadish, MB Johnston, LM Herz

Abstract:

The time-resolved conductivity of isolated GaAs nanowires is investigated by optical-pump terahertz-probe time-domain spectroscopy. The electronic response exhibits a pronounced surface plasmon mode that forms within 300 fs before decaying within 10 ps as a result of charge trapping at the nanowire surface. The mobility is extracted using the Drude model for a plasmon and found to be remarkably high, being roughly one-third of that typical for bulk GaAs at room temperature. © 2007 American Chemical Society.
More details from the publisher
More details

An ion-implanted InP receiver for polarization resolved terahertz spectroscopy.

Opt Express 15:11 (2007) 7047-7057

Authors:

E Castro-Camus, J Lloyd-Hughes, L Fu, HH Tan, C Jagadish, Michael B Johnston

Abstract:

We report on the construction, optical alignment and performance of a receiver which is capable of recording the full polarization state of coherent terahertz radiation. The photoconductive detector was fabricated on InP which had been implanted with Fe(+) ions. The device operated successfully when it was gated with near infrared femtosecond pulses from either a Ti:sapphire laser oscillator or a 1 kHz regenerative laser amplifier. When illuminated with terahertz radiation from a typical photoconductive source, the optimized device had a signal to noise figure of 100:1 with a usable spectral bandwidth of up to 4 THz. The device was shown to be very sensitive to terahertz polarization, being able to resolve changes in polarization of 0.34 degrees. Additionally, we have demonstrated the usefulness of this device for (i) polarization sensitive terahertz spectroscopy, by measuring the birefringence of quartz and (ii) terahertz emission experiments, by measuring the polarization dependence of radiation generated by optical rectification in (110)-ZnTe.
More details from the publisher
More details

Conductivity of nanoporous InP membranes investigated using terahertz spectroscopy

IRMMW-THz2007 - Conference Digest of the Joint 32nd International Conference on Infrared and Millimetre Waves, and 15th International Conference on Terahertz Electronics (2007) 224-225

Authors:

SKE Merchant, J Lloyd-Hughes, L Sirbu, IM Tiginyanu, P Parkinson, LM Herz, MB Johnston

Abstract:

We have investigated the conductivity of equilibrium and photoexcited electrons in nanoporous indium phosphide (InP) of various porosities and of two orientations: (100) and (111). We observed an enhanced transmission through the nanoporous samples compared with bulk InP, resulting from a suppression of the conductivity by the pores. The frequency-dependent conductivity was extracted numerically from the transmission data. We examined the dynamical conductivity of photoexcited carriers using optical-pump THz-probe spectroscopy. After the rapid photoexcitation of electrons, the timeresolved conductivity was observed to decay slowly, with carrier recombination lifetimes exceeding 1 ns for all (100)- and (111)-oriented samples.
More details from the publisher

Enhancement of ultrafast conductivity in surface-passivated GaAs

Optics InfoBase Conference Papers (2007)

Authors:

J Lloyd-Hughes, SKE Merchant, L Fu, HH Tan, C Jagadish, E Castro-Camus, MB Johnston

Abstract:

Optical-pump/terahertz-probe spectroscopy and terahertz emission spectroscopy were used to measure the conductivity and surface electric field change resulting from passivating the surface of GaAs. An enhanced terahertz radiation generation from passivated photoconductive antenna was observed. © 2006 Optical Society of America.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 56
  • Page 57
  • Page 58
  • Page 59
  • Current page 60
  • Page 61
  • Page 62
  • Page 63
  • Page 64
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet