Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Representation of THz spectroscopy of a metamaterial with a Nanowire THz sensor

Representation of THz spectroscopy of a metamaterial with a Nanowire THz sensor

Credit: Rendering by Dimitars Jevtics

Prof Michael Johnston

Professor of Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Terahertz photonics
  • Advanced Device Concepts for Next-Generation Photovoltaics
michael.johnston@physics.ox.ac.uk
Johnston Group Website
  • About
  • Publications

Polarization-sensitive terahertz detection by multicontact photoconductive receivers

Applied Physics Letters 86 (2005) 254102 3pp

Authors:

MB Johnston, E. Castro-Camus, J. Lloyd-Hughes, M. D. Fraser
More details from the publisher
More details

Polarisation-sensitive terahertz detectors

(2005) 582-583

Authors:

MB Johnston, E Castro-Camus, J Lloyd-Hughes, MD Fraser, HH Tan, C Jagadish

Abstract:

We have developed a detector of coherent terahertz (THz) radiation that can recover the full polarisation state of a THz transient. The device is a three-contact photoconductive receiver, which is capable of recording two time-varying electric field components of a THz pulse simultaneously. Our receiver was fabricated on Fe+ implanted InP and showed a cross-polarised extinction ratio greater than 100:1. The detector will be useful for spectroscopy of birefringent and optically active materials.
More details
More details from the publisher

Emission of collimated THz pulses from photo-excited semiconductors

Semiconductor Science and Technology 19:4 SPEC. ISS. (2004)

Authors:

MB Johnston, A Dowd, R Driver, EH Linfield, AG Davies, DM Whittaker

Abstract:

It is shown experimentally that surface-field terahertz (THz) emitters can produce well-collimated beams of THz radiation, making them useful devices for time-domain spectroscopy applications. Simulations of the carrier-dynamics are used to explain the mechanism of THz generation in InAs and GaAs, and it is shown that inter-valley scattering of electrons must be considered in order to fully describe THz emission from InAs.
More details from the publisher

Emission of collimated THz pulses from photo-excited semiconductors

SEMICOND SCI TECH 19:4 (2004) S449-S451

Authors:

MB Johnston, A Dowd, R Driver, EH Linfield, AG Davies, DM Whittaker

Abstract:

It is shown experimentally that surface-field terahertz (THz) emitters can produce well-collimated beams of THz radiation, making them useful devices for time-domain spectroscopy applications. Simulations of the carrier-dynamics are used to explain the mechanism of THz generation in InAs and GaAs, and it is shown that inter-valley scattering of electrons must be considered in order to fully describe THz emission from InAs.
More details from the publisher

Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission

Physical Review B - Condensed Matter and Materials Physics 70:23 (2004) 1-6

Authors:

J Lloyd-Hughes, E Castro-Camus, MD Fraser, C Jagadish, MB Johnston

Abstract:

We have studied terahertz (THz) emission from arsenic-ion implanted GaAs both experimentally and using a three-dimensional carrier dynamics simulation. A uniform density of vacancies was formed over the optical absorption depth of bulk GaAs samples by performing multienergy implantations of arsenic ions (1 and 2.4 MeV) and subsequent thermal annealing. In a series of THz emission experiments the frequency of peak THz power was found to increase significantly from 1.4 to 2.2 THz when the ion implantation dose was increased from 10 13 to 1016 cm-3. We used a semiclassical Monte Carlo simulation of ultrafast carrier dynamics to reproduce and explain these results. The effect of the ion-induced damage was included in the simulation by considering carrier scattering at neutral and charged impurities, as well as carrier trapping at defect sites. Higher vacancy concentrations and shorter carrier trapping times both contributed to shorter simulated THz pulses, the latter being more important over experimentally realistic parameter ranges.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 64
  • Page 65
  • Page 66
  • Page 67
  • Current page 68
  • Page 69
  • Page 70
  • Page 71
  • Page 72
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet