Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Ard Louis

Professor of Theoretical Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
ard.louis@physics.ox.ac.uk
Louis Research Group members
Louis Research Group
  • About
  • Research
  • Publications on arXiv/bioRxiv
  • Publications

Bias in the arrival of variation can dominate over natural selection in Richard Dawkins’ biomorphs

(2023)

Authors:

Nora Martin, Chico Camargo, Ard Louis
More details from the publisher

Maximum Mutational Robustness in Genotype-Phenotype Maps Follows a Self-similar Blancmange-like Curve

(2023)

Authors:

Vaibhav Mohanty, Sam Greenbury, Tasmin Sarkany, Shyam Narayanan, Kamaludin Dingle, Sebastian Ahnert, Ard Louis
More details from the publisher

Predicting phenotype transition probabilities via conditional algorithmic probability approximations

Journal of the Royal Society: Interface The Royal Society 19:197 (2022) 20220694

Authors:

Kamaludin Dingle, Javor K Novev, Sebastian E Ahnert, Ard A Louis

Abstract:

Unravelling the structure of genotype–phenotype (GP) maps is an important problem in biology. Recently, arguments inspired by algorithmic information theory (AIT) and Kolmogorov complexity have been invoked to uncover simplicity bias in GP maps, an exponentially decaying upper bound in phenotype probability with the increasing phenotype descriptional complexity. This means that phenotypes with many genotypes assigned via the GP map must be simple, while complex phenotypes must have few genotypes assigned. Here, we use similar arguments to bound the probability P(x → y) that phenotype x, upon random genetic mutation, transitions to phenotype y. The bound is P(x→y)≲2−aK~(y|x)−b , where K~(y|x) is the estimated conditional complexity of y given x, quantifying how much extra information is required to make y given access to x. This upper bound is related to the conditional form of algorithmic probability from AIT. We demonstrate the practical applicability of our derived bound by predicting phenotype transition probabilities (and other related quantities) in simulations of RNA and protein secondary structures. Our work contributes to a general mathematical understanding of GP maps and may facilitate the prediction of transition probabilities directly from examining phenotype themselves, without utilizing detailed knowledge of the GP map.

More details from the publisher
Details from ORA
More details
More details

The structure of genotype-phenotype maps makes fitness landscapes navigable

Nature Ecology and Evolution Springer Nature 6:11 (2022) 1742-1752

Authors:

Sam F Greenbury, Ard A Louis, Sebastian E Ahnert

Abstract:

Fitness landscapes are often described in terms of 'peaks' and 'valleys', indicating an intuitive low-dimensional landscape of the kind encountered in everyday experience. The space of genotypes, however, is extremely high dimensional, which results in counter-intuitive structural properties of genotype-phenotype maps. Here we show that these properties, such as the presence of pervasive neutral networks, make fitness landscapes navigable. For three biologically realistic genotype-phenotype map models-RNA secondary structure, protein tertiary structure and protein complexes-we find that, even under random fitness assignment, fitness maxima can be reached from almost any other phenotype without passing through fitness valleys. This in turn indicates that true fitness valleys are very rare. By considering evolutionary simulations between pairs of real examples of functional RNA sequences, we show that accessible paths are also likely to be used under evolutionary dynamics. Our findings have broad implications for the prediction of natural evolutionary outcomes and for directed evolution.
More details from the publisher
Details from ORA
More details

Designing the self-assembly of arbitrary shapes using minimal complexity building blocks

(2022)

Authors:

Joakim Bohlin, Andrew J Turberfield, Ard A Louis, Petr Šulc
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet