Coarse-grained modeling of DNA–RNA hybrids
Journal of Chemical Physics American Institute of Physics 160:11 (2024) 115101
Abstract:
We introduce oxNA, a new model for the simulation of DNA–RNA hybrids that is based on two previously developed coarse-grained models—oxDNA and oxRNA. The model naturally reproduces the physical properties of hybrid duplexes, including their structure, persistence length, and force-extension characteristics. By parameterizing the DNA–RNA hydrogen bonding interaction, we fit the model’s thermodynamic properties to experimental data using both average-sequence and sequence-dependent parameters. To demonstrate the model’s applicability, we provide three examples of its use—calculating the free energy profiles of hybrid strand displacement reactions, studying the resolution of a short R-loop, and simulating RNA-scaffolded wireframe origami.Coarse-grained modelling of DNA-RNA hybrids
arXiv (2023) 1-15
Abstract:
We introduce oxNA, a new model for the simulation of DNA-RNA hybrids which is based on two previously developed coarse-grained models—oxDNA and oxRNA. The model naturally reproduces the physical properties of hybrid duplexes including their structure, persistence length and force-extension characteristics. By parameterising the DNA-RNA hydrogen bonding interaction we fit the model's thermodynamic properties to experimental data using both average-sequence and sequence-dependent parameters. To demonstrate the model's applicability we provide three examples of its use—calculating the free energy profiles of hybrid strand displacement reactions, studying the resolution of a short R-loop and simulating RNA-scaffolded wireframe origami.Maximum mutational robustness in genotype-phenotype maps follows a self-similar blancmange-like curve
Journal of the Royal Society Interface Royal Society 20:204 (2023) 20230169