The arrival of the frequent: how bias in genotype-phenotype maps can steer populations to local optima
(2014)
Coarse-Grained Modelling of Extreme DNA Bending
Biophysical Journal Elsevier 106:2 (2014) 66a
The arrival of the frequent: how bias in genotype-phenotype maps can steer populations to local optima.
PLoS One 9:2 (2014) e86635
Abstract:
Genotype-phenotype (GP) maps specify how the random mutations that change genotypes generate variation by altering phenotypes, which, in turn, can trigger selection. Many GP maps share the following general properties: 1) The total number of genotypes N(G) is much larger than the number of selectable phenotypes; 2) Neutral exploration changes the variation that is accessible to the population; 3) The distribution of phenotype frequencies F(p)=N(p)/N(G), with N(p) the number of genotypes mapping onto phenotype p, is highly biased: the majority of genotypes map to only a small minority of the phenotypes. Here we explore how these properties affect the evolutionary dynamics of haploid Wright-Fisher models that are coupled to a random GP map or to a more complex RNA sequence to secondary structure map. For both maps the probability of a mutation leading to a phenotype p scales to first order as F(p), although for the RNA map there are further correlations as well. By using mean-field theory, supported by computer simulations, we show that the discovery time T(p) of a phenotype p similarly scales to first order as 1/F(p) for a wide range of population sizes and mutation rates in both the monomorphic and polymorphic regimes. These differences in the rate at which variation arises can vary over many orders of magnitude. Phenotypic variation with a larger F(p) is therefore be much more likely to arise than variation with a small F(p). We show, using the RNA model, that frequent phenotypes (with larger F(p)) can fix in a population even when alternative, but less frequent, phenotypes with much higher fitness are potentially accessible. In other words, if the fittest never 'arrive' on the timescales of evolutionary change, then they can't fix. We call this highly non-ergodic effect the 'arrival of the frequent'.On the biophysics and kinetics of toehold-mediated DNA strand displacement.
Nucleic Acids Res 41:22 (2013) 10641-10658
Abstract:
Dynamic DNA nanotechnology often uses toehold-mediated strand displacement for controlling reaction kinetics. Although the dependence of strand displacement kinetics on toehold length has been experimentally characterized and phenomenologically modeled, detailed biophysical understanding has remained elusive. Here, we study strand displacement at multiple levels of detail, using an intuitive model of a random walk on a 1D energy landscape, a secondary structure kinetics model with single base-pair steps and a coarse-grained molecular model that incorporates 3D geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Two factors explain the dependence of strand displacement kinetics on toehold length: (i) the physical process by which a single step of branch migration occurs is significantly slower than the fraying of a single base pair and (ii) initiating branch migration incurs a thermodynamic penalty, not captured by state-of-the-art nearest neighbor models of DNA, due to the additional overhang it engenders at the junction. Our findings are consistent with previously measured or inferred rates for hybridization, fraying and branch migration, and they provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.Viscous fingering at ultralow interfacial tension
Soft Matter 9:44 (2013) 10599-10605