Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Ard Louis

Professor of Theoretical Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
ard.louis@physics.ox.ac.uk
Louis Research Group members
Louis Research Group
  • About
  • Research
  • Publications on arXiv/bioRxiv
  • Publications

Simulating a burnt-bridges DNA motor with a coarse-grained DNA model

(2012)

Authors:

Petr Šulc, Thomas E Ouldridge, Flavio Romano, Jonathan PK Doye, Ard A Louis
More details from the publisher

Simulating a burnt-bridges DNA motor with a coarse-grained DNA model

Natural Computing Springer Netherlands 13:4 (2012) 535-547

Authors:

P Sulc, Thomas Ouldridge, F Romano, Jonathan Doye, AA Louis

Abstract:

We apply a recently-developed coarse-grained model of DNA, designed to capture the basic physics of nanotechnological DNA systems, to the study of a 'burnt-bridges' DNA motor consisting of a single-stranded cargo that steps processively along a track of single-stranded stators. We demonstrate that the model is able to simulate such a system, and investigate the sensitivity of the stepping process to the spatial separation of stators, finding that an increased distance can suppress successful steps due to the build up of unfavourable tension. The mechanism of suppression suggests that varying the distance between stators could be used as a method for improving signal-to-noise ratios for motors that are required to make a decision at a junction of stators.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Effect of bending rigidity on the knotting of a polymer under tension

(2012)

Authors:

Richard Matthews, Ard A Louis, Christos N Likos
More details from the publisher

Coarse-grained simulations of DNA overstretching

ArXiv 1209.5892 (2012)

Authors:

Flavio Romano, Debayan Chakraborty, Jonathan PK Doye, Thomas E Ouldridge, Ard A Louis

Abstract:

We use a recently developed coarse-grained model to simulate the overstretching of duplex DNA. Overstretching at 23C occurs at 74 pN in the model, about 6-7 pN higher than the experimental value at equivalent salt conditions. Furthermore, the model reproduces the temperature dependence of the overstretching force well. The mechanism of overstretching is always force-induced melting by unpeeling from the free ends. That we never see S-DNA (overstretched duplex DNA), even though there is clear experimental evidence for this mode of overstretching under certain conditions, suggests that S-DNA is not simply an unstacked but hydrogen-bonded duplex, but instead probably has a more exotic structure.
Details from ArXiV
More details from the publisher
Details from ORA
More details
More details

Coarse-grained simulations of DNA overstretching

(2012)

Authors:

Flavio Romano, Debayan Chakraborty, Jonathan PK Doye, Thomas E Ouldridge, Ard A Louis
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • Current page 25
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet