Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Ard Louis

Professor of Theoretical Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
ard.louis@physics.ox.ac.uk
Louis Research Group members
Louis Research Group
  • About
  • Research
  • Publications on arXiv/bioRxiv
  • Publications

Viscous fingering at ultralow interfacial tension

(2013)

Authors:

Siti Aminah Setu, Ioannis Zacharoudiou, Gareth J Davies, Denis Bartolo, Sebastien Moulinet, Ard A Louis, Julia M Yeomans, Dirk GAL Aarts
More details from the publisher

Coarse-graining DNA for simulations of DNA nanotechnology

ArXiv 1308.3843 (2013)

Authors:

Jonathan PK Doye, Thomas E Ouldridge, Ard A Louis, Flavio Romano, Petr Sulc, Christian Matek, Benedict EK Snodin, Lorenzo Rovigatti, John S Schreck, Ryan M Harrison, William PJ Smith

Abstract:

To simulate long time and length scale processes involving DNA it is necessary to use a coarse-grained description. Here we provide an overview of different approaches to such coarse graining, focussing on those at the nucleotide level that allow the self-assembly processes associated with DNA nanotechnology to be studied. OxDNA, our recently-developed coarse-grained DNA model, is particularly suited to this task, and has opened up this field to systematic study by simulations. We illustrate some of the range of DNA nanotechnology systems to which the model is being applied, as well as the insights it can provide into fundamental biophysical properties of DNA.
Details from ArXiV
More details from the publisher
Details from ORA
More details
More details

Coarse-graining DNA for simulations of DNA nanotechnology

(2013)

Authors:

Jonathan PK Doye, Thomas E Ouldridge, Ard A Louis, Flavio Romano, Petr Sulc, Christian Matek, Benedict EK Snodin, Lorenzo Rovigatti, John S Schreck, Ryan M Harrison, William PJ Smith
More details from the publisher

Correlation of Automorphism Group Size and Topological Properties with Program-size Complexity Evaluations of Graphs and Complex Networks

(2013)

Authors:

Hector Zenil, Fernando Soler-Toscano, Kamaludin Dingle, Ard A Louis
More details from the publisher

Optimizing DNA nanotechnology through coarse-grained modeling: a two-footed DNA walker.

ACS Nano 7:3 (2013) 2479-2490

Authors:

Thomas E Ouldridge, Rollo L Hoare, Ard A Louis, Jonathan PK Doye, Jonathan Bath, Andrew J Turberfield

Abstract:

DNA has enormous potential as a programmable material for creating artificial nanoscale structures and devices. For more complex systems, however, rational design and optimization can become difficult. We have recently proposed a coarse-grained model of DNA that captures the basic thermodynamic, structural, and mechanical changes associated with the fundamental process in much of DNA nanotechnology, the formation of duplexes from single strands. In this article, we demonstrate that the model can provide powerful insight into the operation of complex nanotechnological systems through a detailed investigation of a two-footed DNA walker that is designed to step along a reusable track, thereby offering the possibility of optimizing the design of such systems. We find that applying moderate tension to the track can have a large influence on the operation of the walker, providing a bias for stepping forward and helping the walker to recover from undesirable overstepped states. Further, we show that the process by which spent fuel detaches from the walker can have a significant impact on the rebinding of the walker to the track, strongly influencing walker efficiency and speed. Finally, using the results of the simulations, we propose a number of modifications to the walker to improve its operation.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • Current page 24
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet