Pattern formation in colloidal explosions
ArXiv 1009.193 (2010)
Authors:
Arthur V Straube, Ard A Louis, Jörg Baumgartl, Clemens Bechinger, Roel PA Dullens
Abstract:
We study the non-equilibrium pattern formation that emerges when magnetically
repelling colloids, trapped by optical tweezers, are abruptly released, forming
colloidal explosions. For multiple colloids in a single trap we observe a
pattern of expanding concentric rings. For colloids individually trapped in a
line, we observe explosions with a zigzag pattern that persists even when
magnetic interactions are much weaker than those that break the linear symmetry
in equilibrium. Theory and computer simulations quantitatively describe these
phenomena both in and out of equilibrium. An analysis of the mode spectrum
allows us to accurately quantify the non-harmonic nature of the optical traps.
Colloidal explosions provide a new way to generate well-characterized
non-equilibrium behaviour in colloidal systems.