Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Ard Louis

Professor of Theoretical Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
ard.louis@physics.ox.ac.uk
Louis Research Group members
Louis Research Group
  • About
  • Research
  • Publications on arXiv/bioRxiv
  • Publications

Self-assembly, modularity and physical complexity

ArXiv 0912.3464 (2009)

Authors:

SE Ahnert, IG Johnston, TMA Fink, JPK Doye, AA Louis

Abstract:

We present a quantitative measure of physical complexity, based on the amount of information required to build a given physical structure through self-assembly. Our procedure can be adapted to any given geometry, and thus to any given type of physical system. We illustrate our approach using self-assembling polyominoes, and demonstrate the breadth of its potential applications by quantifying the physical complexity of molecules and protein complexes. This measure is particularly well suited for the detection of symmetry and modularity in the underlying structure, and allows for a quantitative definition of structural modularity. Furthermore we use our approach to show that symmetric and modular structures are favoured in biological self-assembly, for example of protein complexes. Lastly, we also introduce the notions of joint, mutual and conditional complexity, which provide a useful distance measure between physical structures.
Details from ArXiV
More details from the publisher
Details from ORA
More details
More details

Monodisperse self-assembly in a model with protein-like interactions.

J Chem Phys 131:17 (2009) 175102

Authors:

Alex W Wilber, Jonathan PK Doye, Ard A Louis, Anna CF Lewis

Abstract:

We study the self-assembly behavior of patchy particles with "proteinlike" interactions that can be considered as a minimal model for the assembly of viral capsids and other shell-like protein complexes. We thoroughly explore the thermodynamics and dynamics of self-assembly as a function of the parameters of the model and find robust assembly of all target structures considered. Optimal assembly occurs in the region of parameter space where a free energy barrier regulates the rate of nucleation, thus preventing the premature exhaustion of the supply of monomers that can lead to the formation of incomplete shells. The interactions also need to be specific enough to prevent the assembly of malformed shells, but while maintaining kinetic accessibility. Free energy landscapes computed for our model have a funnel-like topography guiding the system to form the target structure and show that the torsional component of the interparticle interactions prevents the formation of disordered aggregates that would otherwise act as kinetic traps.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Self-assembly of monodisperse clusters: Dependence on target geometry.

J Chem Phys 131:17 (2009) 175101

Authors:

Alex W Wilber, Jonathan PK Doye, Ard A Louis

Abstract:

We apply a simple model system of patchy particles to study monodisperse self-assembly using the Platonic solids as target structures. We find marked differences between the assembly behaviors of the different systems. Tetrahedra, octahedral, and icosahedra assemble easily, while cubes are more challenging and dodecahedra do not assemble. We relate these differences to the kinetics and thermodynamics of assembly, with the formation of large disordered aggregates a particular important competitor to correct assembly. In particular, the free energy landscapes of those targets that are easy to assemble are funnel-like, whereas for the dodecahedral system the landscape is relatively flat with little driving force to facilitate escape from disordered aggregates.
More details from the publisher
Details from ORA
More details
Details from ArXiV

DNA nanotweezers studied with a coarse-grained model of DNA

ArXiv 0911.0555 (2009)

Authors:

Thomas E Ouldridge, Ard A Louis, Jonathan PK Doye

Abstract:

We introduce a coarse-grained rigid nucleotide model of DNA that reproduces the basic thermodynamics of short strands: duplex hybridization, single-stranded stacking and hairpin formation, and also captures the essential structural properties of DNA: the helical pitch, persistence length and torsional stiffness of double-stranded molecules, as well as the comparative flexibility of unstacked single strands. We apply the model to calculate the detailed free-energy landscape of one full cycle of DNA 'tweezers', a simple machine driven by hybridization and strand displacement.
Details from ArXiV
More details from the publisher
Details from ORA
More details
More details

DNA nanotweezers studied with a coarse-grained model of DNA

(2009)

Authors:

Thomas E Ouldridge, Ard A Louis, Jonathan PK Doye
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • Current page 35
  • Page 36
  • Page 37
  • Page 38
  • Page 39
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet