Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Ard Louis

Professor of Theoretical Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
ard.louis@physics.ox.ac.uk
Louis Research Group members
Louis Research Group
  • About
  • Research
  • Publications on arXiv/bioRxiv
  • Publications

The effect of scale-free topology on the robustness and evolvability of genetic regulatory networks

(2010)

Authors:

Sam F Greenbury, Iain G Johnston, Matthew A Smith, Jonathan PK Doye, Ard A Louis
More details from the publisher

Is Water an Amniotic Eden or a Corrosive Hell? Emerging Perspectives on the Strangest Fluid in the Universe

Chapter in Water and Life, Taylor & Francis (2010) 3-9

Authors:

Simon Morris, Ard Louis
More details from the publisher
More details

Coarse-graining dynamics by telescoping down time-scales: comment for Faraday FD144

(2010)
More details from the publisher

No free lunch for effective potentials: general comment for Faraday FD144

(2010)
More details from the publisher

Is water an amniotic eden or a corrosive hell?: Emerging perspectives on the strangest fluid in the universe

Chapter in Water and Life: The Unique Properties of H2O, (2010) 3-9

Authors:

SC Morris, AA Louis

Abstract:

The fact that ice oats because of the hydrogen bonding imposing a perfect tetrahedrally coordinated network, linking them into six-membered rings with much empty space between the molecules (Franzese and Stanley, p. 105), is perhaps the best known of what are widely seen as a long list of curiosities. Water’s maximum density at 4°C and its unusually high thermal capacity are also familiar anomalies. Many others, however, are less celebrated but are surely as noteworthy. Both the melting and boiling points of water are unexpectedly high when it is placed in the sequence of group VI hydrides. So Lyndell-Bell and Debenedetti remind us by this extrapolation, although not by this imagery, that ice placed in a gin and tonic would melt at -100°C and a cup of tea should be prepared at -80°C. Not only that, but the effect of supercooling is also remarkable, so that at ambient pressure it can reach -41°C, whereas at 2 kbar it may be as low as -92°C (Franzese and Stanley, p. 102). These authors also remind us that if the supercooling is very rapid the water fails to crystallize and becomes a glass. This is of more than passing interest because in its high density form it is “the most abundant ice in the universe, where it is found as a frost on interstellar grains” (Franzese and Stanley, p. 103). This is not the only regime in which water becomes amorphous. In the hydration layer associated with a peptide, the water again has glasslike properties “with a very rough potential-energy landscape and slow hopping between local potential minima” (Ball, p. 56).
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 29
  • Page 30
  • Page 31
  • Page 32
  • Current page 33
  • Page 34
  • Page 35
  • Page 36
  • Page 37
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet