Modelling the Self-Assembly of Virus Capsids
ArXiv 0910.1916 (2009)
Abstract:
We use computer simulations to study a model, first proposed by Wales [1], for the reversible and monodisperse self-assembly of simple icosahedral virus capsid structures. The success and efficiency of assembly as a function of thermodynamic and geometric factors can be qualitatively related to the potential energy landscape structure of the assembling system. Even though the model is strongly coarse-grained, it exhibits a number of features also observed in experiments, such as sigmoidal assembly dynamics, hysteresis in capsid formation and numerous kinetic traps. We also investigate the effect of macromolecular crowding on the assembly dynamics. Crowding agents generally reduce capsid yields at optimal conditions for non-crowded assembly, but may increase yields for parameter regimes away from the optimum. Finally, we generalize the model to a larger triangulation number T = 3, and observe more complex assembly dynamics than that seen for the original T = 1 model.Extracting bulk properties of self-assembling systems from small simulations
ArXiv 0910.1201 (2009)
Abstract:
For systems that self assemble into finite-sized objects, it is sometimes convenient to compute the thermodynamics for a small system where a single assembly can form. However, we show that in the canonical ensemble the use of small systems can lead to significant finite-size effects due to the suppression of concentration fluctuations. We introduce methods to estimate the bulk-yields from simulations of small systems and to follow the convergence of yields with system size, under the assumptions that the various species behave ideally. We also propose an extension to the umbrella sampling technique that allows the formation of multiple finite-sized objects.Extracting bulk properties of self-assembling systems from small simulations
(2009)
Effect of topology on dynamics of knots in polymers under tension
(2009)