Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

John March-Russell

Professor of Theoretical Physics and Senior Research Fellow, New College, Oxford; Perimeter Institute Distinguished Visiting Research Chair

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions
  • Fields, strings, and quantum dynamics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
  • AION/Magis
John.March-Russell@physics.ox.ac.uk
Telephone: 01865 (2)73630
Rudolf Peierls Centre for Theoretical Physics, room 60.05
  • About
  • Publications

Evaporating primordial black holes, the string axiverse, and hot dark radiation

(2021)

Authors:

Marco Calzà, John March-Russell, João G Rosa
More details from the publisher
Details from ArXiV

Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100)

Quantum Science and Technology IOP Publishing 6:4 (2021) 044003

Authors:

Mahiro Abe, Philip Adamson, Marcel Borcean, Daniela Bortoletto, Kieran Bridges, Samuel P Carman, Swapan Chattopadhyay, Jonathon Coleman, Noah M Curfman, Kenneth DeRose, Tejas Deshpande, Savas Dimopoulos, Christopher J Foot, Josef C Frisch, Benjamin E Garber, Steve Geer, Valerie Gibson, Jonah Glick, Peter W Graham, Steve R Hahn, Roni Harnik, Leonie Hawkins, Sam Hindley, Jason M Hogan, Yijun Jiang (姜一君), Mark A Kasevich, Ronald J Kellett, Mandy Kiburg, Tim Kovachy, Joseph D Lykken, John March-Russell, Jeremiah Mitchell, Martin Murphy, Megan Nantel, Lucy E Nobrega, Robert K Plunkett, Surjeet Rajendran, Jan Rudolph, Natasha Sachdeva, Murtaza Safdari, James K Santucci, Ariel G Schwartzman, Ian Shipsey, Hunter Swan, Linda R Valerio, Arvydas Vasonis, Yiping Wang, Thomas Wilkason
More details from the publisher
More details
More details
Details from ArXiV

Axiverse Strings

(2021)

Authors:

John March-Russell, Hannah Tillim
More details from the publisher
Details from ArXiV

Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100)

(2021)

Authors:

Mahiro Abe, Philip Adamson, Marcel Borcean, Daniela Bortoletto, Kieran Bridges, Samuel P Carman, Swapan Chattopadhyay, Jonathon Coleman, Noah M Curfman, Kenneth DeRose, Tejas Deshpande, Savas Dimopoulos, Christopher J Foot, Josef C Frisch, Benjamin E Garber, Steve Geer, Valerie Gibson, Jonah Glick, Peter W Graham, Steve R Hahn, Roni Harnik, Leonie Hawkins, Sam Hindley, Jason M Hogan, Yijun Jiang, Mark A Kasevich, Ronald J Kellett, Mandy Kiburg, Tim Kovachy, Joseph D Lykken, John March-Russell, Jeremiah Mitchell, Martin Murphy, Megan Nantel, Lucy E Nobrega, Robert K Plunkett, Surjeet Rajendran, Jan Rudolph, Natasha Sachdeva, Murtaza Safdari, James K Santucci, Ariel G Schwartzman, Ian Shipsey, Hunter Swan, Linda R Valerio, Arvydas Vasonis, Yiping Wang, Thomas Wilkason
More details from the publisher

Reproductive freeze-in of self-interacting dark matter

Physical Review D American Physical Society 102:8 (2020) 83018

Authors:

John March-Russell, Hannah Tillim, Stephen M West

Abstract:

We present a mechanism for dark matter (DM) production involving a self-interacting sector that at early times is ultrarelativistic but far underpopulated relative to thermal equilibrium (such initial conditions often arise, e.g., from inflaton decay). Although elastic scatterings can establish kinetic equilibrium we show that for a broad variety of self-interactions full equilibrium is never established despite the DM yield significantly evolving due to 2→k (k>2) processes (the DM carries no conserved quantum number nor asymmetry). During the active phase of the process, the DM to Standard Model temperature ratio falls rapidly, with DM kinetic energy being converted to DM mass, the inverse of the recently discussed “cannibal DM mechanism.” As this evolution is an approach from an out-of-equilibrium to equilibrium state, entropy is not conserved. Potential observables and applications include self-interacting DM signatures in galaxies and clusters, dark acoustic oscillations, the alteration of free-streaming constraints, and possible easing of σ8 and Hubble tensions.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet