Reproductive freeze-in of self-interacting dark matter
Physical Review D American Physical Society 102:8 (2020) 83018
Abstract:
We present a mechanism for dark matter (DM) production involving a self-interacting sector that at early times is ultrarelativistic but far underpopulated relative to thermal equilibrium (such initial conditions often arise, e.g., from inflaton decay). Although elastic scatterings can establish kinetic equilibrium we show that for a broad variety of self-interactions full equilibrium is never established despite the DM yield significantly evolving due to 2→k (k>2) processes (the DM carries no conserved quantum number nor asymmetry). During the active phase of the process, the DM to Standard Model temperature ratio falls rapidly, with DM kinetic energy being converted to DM mass, the inverse of the recently discussed “cannibal DM mechanism.” As this evolution is an approach from an out-of-equilibrium to equilibrium state, entropy is not conserved. Potential observables and applications include self-interacting DM signatures in galaxies and clusters, dark acoustic oscillations, the alteration of free-streaming constraints, and possible easing of σ8 and Hubble tensions.Hawking radiation of extended objects
Journal of High Energy Physics Springer 2020:4 (2020) 205
Abstract:
We compute the effects on the temperature and precise spectrum of Hawking radiation from a Schwarzschild black hole when the emitted object is taken to be spatially extended. We find that in the low-momentum regime, the power emitted is exponentially suppressed for sufficiently large radiated objects, or sufficiently small black holes, though the temperature of emission is unchanged. We numerically determine the magnitude of this suppression as a function of the size and mass of the object and the black hole, and discuss the implications for various extended objects in nature.Hot Gravitons and Gravitational Waves From Kerr Black Holes in the Early Universe
(2020)