Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

John March-Russell

Professor of Theoretical Physics and Senior Research Fellow, New College, Oxford; Perimeter Institute Distinguished Visiting Research Chair

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions
  • Fields, strings, and quantum dynamics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
  • AION/Magis
John.March-Russell@physics.ox.ac.uk
Telephone: 01865 (2)73630
Rudolf Peierls Centre for Theoretical Physics, room 60.05
  • About
  • Publications

Higgs assisted Q-balls from pseudo-Nambu-Goldstone bosons

JOURNAL OF HIGH ENERGY PHYSICS (2017) ARTN 179

Authors:

F Bishara, G Johnson, O Lennon, J March-Russell
More details from the publisher
Details from ORA
More details
Details from ArXiV

Higgs Assisted Q-balls from Pseudo-Nambu-Goldstone Bosons

(2017)

Authors:

Fady Bishara, George Johnson, Olivier Lennon, John March-Russell
More details from the publisher

Unified maximally natural supersymmetry

arXiv (2016)

Authors:

Junwu Huang, John March-Russell

Abstract:

Maximally Natural Supersymmetry, an unusual weak-scale supersymmetric extension of the Standard Model based upon the inherently higher-dimensional mechanism of Scherk-Schwarz supersymmetry breaking (SSSB), possesses remarkably good fine tuning given present LHC limits. Here we construct a version with precision $SU(2)_{\rm L} \times U(1)_{\rm Y} $ unification: $\sin^2 \theta_W(M_Z) \simeq 0.231$ is predicted to $\pm 2\%$ by unifying $SU(2)_{\rm L} \times U(1)_{\rm Y} $ into a 5D $SU(3)_{\rm EW}$ theory at a Kaluza-Klein scale of $1/R_5 \sim 4.4\,{\rm TeV}$, where SSSB is simultaneously realised. Full unification with $SU(3)_{\rm C}$ is accommodated by extending the 5D theory to a $N=4$ supersymmetric $SU(6)$ gauge theory on a 6D rectangular orbifold at $1/R_6 \sim 40 \,{\rm TeV}$. TeV-scale states beyond the SM include exotic charged fermions implied by $SU(3)_{\rm EW}$ with masses lighter than $\sim 1.2\,{\rm TeV}$, and squarks in the mass range $1.4\,{\rm TeV} - 2.3\,{\rm TeV}$, providing distinct signatures and discovery opportunities for LHC run II.
More details from the publisher
Details from ORA
Details from ArXiV
More details

The String Soundscape at Gravitational Wave Detectors

(2016)

Authors:

Isabel Garcia Garcia, Sven Krippendorf, John March-Russell
More details from the publisher

Baryogenesis via particle-antiparticle oscillations

Physical Review D American Physical Society 93:123528 (2016)

Authors:

Seyda Ipek, John March-Russell

Abstract:

CP violation, which is crucial for producing the baryon asymmetry of the Universe, is enhanced in particle-antiparticle oscillations. We study particle-antiparticle oscillations [of a particle with mass O(100 GeV)] with CP violation in the early Universe in the presence of interactions with O(ab-fb) cross sections. We show that if baryon-number-violating interactions exist, a baryon asymmetry can be produced via out-of-equilibrium decays of oscillating particles. As a concrete example we study a U(1)R-symmetric, R-parity-violating supersymmetry model with pseudo-Dirac gauginos, which undergo particle-antiparticle oscillations. Taking bino to be the lightest U(1)R-symmetric particle, and assuming it decays via baryon-number-violating interactions, we show that bino-antibino oscillations can produce the baryon asymmetry of the Universe.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Current page 7
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet