Freeze-In Production of FIMP Dark Matter
ArXiv 0911.1120 (2009)
Abstract:
We propose an alternate, calculable mechanism of dark matter genesis, "thermal freeze-in," involving a Feebly Interacting Massive Particle (FIMP) interacting so feebly with the thermal bath that it never attains thermal equilibrium. As with the conventional "thermal freeze-out" production mechanism, the relic abundance reflects a combination of initial thermal distributions together with particle masses and couplings that can be measured in the laboratory or astrophysically. The freeze-in yield is IR dominated by low temperatures near the FIMP mass and is independent of unknown UV physics, such as the reheat temperature after inflation. Moduli and modulinos of string theory compactifications that receive mass from weak-scale supersymmetry breaking provide implementations of the freeze-in mechanism, as do models that employ Dirac neutrino masses or GUT-scale-suppressed interactions. Experimental signals of freeze-in and FIMPs can be spectacular, including the production of new metastable coloured or charged particles at the LHC as well as the alteration of big bang nucleosynthesis.On the possibility of light string resonances at the LHC and Tevatron from Randall-Sundrum throats
Journal of High Energy Physics 2009:7 (2009)
Abstract:
In string realizations of the Randall-Sundrum scenario, the higher-spin Regge excitations of Standard Model states localized near the IR brane are warped down to close to the TeV scale. We argue that, as a consequence of the localization properties of Randall-Sundrum models of flavour, the lightest such resonance is the spin-3/2 excitation, t R*, of the right-handed top quark over a significant region of parameter space. A mild accidental cancellation allows the t R* to be as light or lighter than the Kaluza-Klein excitations of the Standard Model states. We consider from a bottom-up effective theory point of view the production and possible observability of such a spin-3/2 excitation at the LHC and Tevatron. Current limits are weaker than might be expected because of the excess of WWjj events at the Tevatron reported by CDF at M inv ≃400-500 GeV. © SISSA 2009.Inducing the μ and the Bμ term by the radion and the 5d Chern-Simons term
Journal of High Energy Physics 2009:8 (2009)