Resonant particle production in branonium
ArXiv 0711.0658 (2007)
Abstract:
We study the mechanism of particle production in the world-volume of a probe anti D6-brane (or D6 with SUSY breaking) moving in the background created by a fixed stack of $D6$-branes. We show that this may occur in a regime of parametric resonance when the probe's motion is non-relativistic and it moves at large distances from the source branes in low eccentricity orbits. This leads to an exponential growth of the particle number in the probe's world-volume and constitutes an effective mechanism for producing very massive particles. We also analyze the evolution of this system in an expanding universe and how this affects the development of the parametric resonance. We discuss the effects of transverse space compactification on the probe's motion, showing that it leads to the creation of angular momentum in a similar way to the Affleck-Dine mechanism for baryogenesis. Finally, we describe possible final states of the system and their potential relevance to cosmology.Warped deformed throats have faster (electroweak) phase transitions
Journal of High Energy Physics 2007:10 (2007)
Abstract:
We study the dynamics of the finite-temperature phase transition for warped Randall-Sundrum(RS)-like throat models related to the Klebanov-Tseytlin solution. We find that, for infrared branes stabilized near the tip of the throat, the bounce action has a mild N 2 dependence, where N(y) ∼ [M 5L(y)] 3/2 is the effective number of degrees of freedom of the holographic dual QFT, and where L(y) is the local curvature radius, which decreases in the infrared. In addition, the bounce action is not enhanced by large numbers. These features allow the transition to successfully complete over a wider parameter range than for Goldberger-Wise stabilized RS models. Due to the increase of L(y) in the ultraviolet, the throat has a reliable gravitational description even when the number of infrared degrees of freedom is small. We also comment on aspects of the thermal phase transition in Higgsless models, where the gauge symmetry breaking is achieved via boundary conditions. Such models include orbifold-GUT models and the Higgsless electroweak symmetry breaking theories of Csaki et al, with Standard Model gauge fields living in the bulk. © SISSA 2007.Warped Deformed Throats have Faster (Electroweak) Phase Transitions
ArXiv 0708.2060 (2007)
Abstract:
We study the dynamics of the finite-temperature phase transition for warped Randall-Sundrum(RS)-like throat models related to the Klebanov-Tseytlin solution. We find that, for infrared branes stabilized near the tip of the throat, the bounce action has a mild N^2 dependence, where N(y) \sim [M_5 L(y)]^{3/2} is the effective number of degrees of freedom of the holographic dual QFT, and where L(y) is the local curvature radius, which decreases in the infrared. In addition, the bounce action is not enhanced by large numbers. These features allow the transition to successfully complete over a wider parameter range than for Goldberger-Wise stabilized RS models. Due to the increase of L(y) in the ultraviolet, the throat has a reliable gravitational description even when the number of infrared degrees of freedom is small. We also comment on aspects of the thermal phase transition in Higgsless models, where the gauge symmetry breaking is achieved via boundary conditions. Such models include orbifold-GUT models and the Higgsless electroweak symmetry breaking theories of Csaki et al., with Standard Model gauge fields living in the bulk.Warped Deformed Throats have Faster (Electroweak) Phase Transitions
(2007)