Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

John March-Russell

Professor of Theoretical Physics and Senior Research Fellow, New College, Oxford; Perimeter Institute Distinguished Visiting Research Chair

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions
  • Fields, strings, and quantum dynamics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
  • AION/Magis
John.March-Russell@physics.ox.ac.uk
Telephone: 01865 (2)73630
Rudolf Peierls Centre for Theoretical Physics, room 60.05
  • About
  • Publications

Inducing the mu and the B mu Term by the Radion and the 5d Chern-Simons Term

ArXiv 0801.4101 (2008)

Authors:

Arthur Hebecker, John March-Russell, Robert Ziegler

Abstract:

In 5-dimensional models with gauge-Higgs unification, the F-term vacuum expectation value of the radion provides, in close analogy to the Giudice-Masiero mechanism, a natural source for the mu and B mu term. Both the leading order gauge theory lagrangian and the supersymmetric Chern-Simons term contain couplings to the radion superfield which can be used for this purpose. We analyse the basic features of this mechanism for mu term generation and provide an explicit example, based on a variation of the SU(6) gauge-Higgs unification model of Burdman and Nomura. This construction contains all the relevant features used in our generic analysis. More generally, we expect our mechanism to be relevant to many of the recently discussed orbifold GUT models derived from heterotic string theory. This provides an interesting way of testing high-scale physics via Higgs mass patterns accessible at the LHC.
Details from ArXiV
More details from the publisher

Inducing the mu and the B mu Term by the Radion and the 5d Chern-Simons Term

(2008)

Authors:

Arthur Hebecker, John March-Russell, Robert Ziegler
More details from the publisher

Heavy Dark Matter Through the Higgs Portal

ArXiv 0801.3440 (2008)

Authors:

John March-Russell, Stephen M West, Daniel Cumberbatch, Dan Hooper

Abstract:

Motivated by Higgs Portal and Hidden Valley models, heavy particle dark matter that communicates with the supersymmetric Standard Model via pure Higgs sector interactions is considered. We show that a thermal relic abundance consistent with the measured density of dark matter is possible for masses up to $\sim 30\tev$. For dark matter masses above $\sim 1\tev$, non-perturbative Sommerfeld corrections to the annihilation rate are large, and have the potential to greatly affect indirect detection signals. For large dark matter masses, the Higgs-dark-matter-sector couplings are large and we show how such models may be given a UV completion within the context of so-called "Fat-Higgs" models. Higgs Portal dark matter provides an example of an attractive alternative to conventional MSSM neutralino dark matter that may evade discovery at the LHC, while still being within the reach of current and upcoming indirect detection experiments.
Details from ArXiV
More details from the publisher

Heavy Dark Matter Through the Higgs Portal

(2008)

Authors:

John March-Russell, Stephen M West, Daniel Cumberbatch, Dan Hooper
More details from the publisher

Resonant particle production in branonium

ArXiv 0711.0658 (2007)

Authors:

JG Rosa, John March-Russell

Abstract:

We study the mechanism of particle production in the world-volume of a probe anti D6-brane (or D6 with SUSY breaking) moving in the background created by a fixed stack of $D6$-branes. We show that this may occur in a regime of parametric resonance when the probe's motion is non-relativistic and it moves at large distances from the source branes in low eccentricity orbits. This leads to an exponential growth of the particle number in the probe's world-volume and constitutes an effective mechanism for producing very massive particles. We also analyze the evolution of this system in an expanding universe and how this affects the development of the parametric resonance. We discuss the effects of transverse space compactification on the probe's motion, showing that it leads to the creation of angular momentum in a similar way to the Affleck-Dine mechanism for baryogenesis. Finally, we describe possible final states of the system and their potential relevance to cosmology.
Details from ArXiV
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • Current page 20
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet