The study of parametric instabilities relevant to Laser-Plasma interactions in Fast Ignition
39th EPS Conference on Plasma Physics 2012, EPS 2012 and the 16th International Congress on Plasma Physics 2 (2012) 938-941
Testing quantum mechanics in non-Minkowski space-time with high power lasers and 4 th generation light sources
Scientific Reports 2 (2012)
Abstract:
A common misperception of quantum gravity is that it requires accessing energies up to the Planck scale of 10 19 GeV, which is unattainable from any conceivable particle collider. Thanks to the development of ultra-high intensity optical lasers, very large accelerations can be now the reached at their focal spot, thus mimicking, by virtue of the equivalence principle, a non Minkowski space-time. Here we derive a semiclassical extension of quantum mechanics that applies to different metrics, but under the assumption of weak gravity. We use our results to show that Thomson scattering of photons by uniformly accelerated electrons predicts an observable effect depending upon acceleration and local metric. In the laboratory frame, a broadening of the Thomson scattered x ray light from a fourth generation light source can be used to detect the modification of the metric associated to electrons accelerated in the field of a high power optical laser.Controlling fast-electron-beam divergence using two laser pulses
Physical Review Letters 109:1 (2012)
Abstract:
This Letter describes the first experimental demonstration of the guiding of a relativistic electron beam in a solid target using two colinear, relativistically intense, picosecond laser pulses. The first pulse creates a magnetic field that guides the higher-current, fast-electron beam generated by the second pulse. The effects of intensity ratio, delay, total energy, and intrinsic prepulse are examined. Thermal and Kα imaging show reduced emission size, increased peak emission, and increased total emission at delays of 4-6 ps, an intensity ratio of 10 1 (second:first) and a total energy of 186 J. In comparison to a single, high-contrast shot, the inferred fast-electron divergence is reduced by 2.7 times, while the fast-electron current density is increased by a factor of 1.8. The enhancements are reproduced with modeling and are shown to be due to the self-generation of magnetic fields. Such a scheme could be of considerable benefit to fast-ignition inertial fusion. © 2012 American Physical Society.BEAM INSTABILITIES IN LASER-PLASMA INTERACTIONS RELEVANT TO FAST IGNITION
Institute of Electrical and Electronics Engineers (IEEE) 1 (2012) 1p-133-1p-133
EXPERIMENTAL AND SIMULATED COUPLING AND SPECTRA OF HOT ELECTRONS INTO CONE-WIRE TARGETS*This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory DE-AC52-07NA27344.
Institute of Electrical and Electronics Engineers (IEEE) 1 (2012) 2d-1-2d-1