Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

The zero vector potential mechanism of attosecond absorption

Physics of Plasmas 18:5 (2011)

Authors:

T Baeva, S Gordienko, APL Robinson, PA Norreys

Abstract:

A new mechanism for the absorption of energy during the interaction between an ultra-intense laser pulse and a sharp-edged overdense plasma, which we term the zero vector potential (ZVP) mechanism, is presented. The ZVP-mechanism is a nonponderomotive absorption mechanism that should dominate in the interaction of very strong short laser pulses (a0≫1) with overdense plasmas in the case of sharp density gradients. In the ZVP-mechanism the existence of moving zeroes in the vector potential of the relativistic skin layer is crucial to the generation of both fast electron bunches and coherent x-rays. We demonstrate that the laser energy is absorbed from the plasma on the attosecond timescale in the form of electron bunches with unprecedentedly short duration. The numerical simulations are able to validate all qualitative and quantitative aspects of the ZVP-mechanism. © 2011 American Institute of Physics.
More details from the publisher

High-power, kilojoule class laser channeling in millimeter-scale underdense plasma

Physical Review Letters 106:10 (2011)

Authors:

L Willingale, PM Nilson, AGR Thomas, J Cobble, RS Craxton, A Maksimchuk, PA Norreys, TC Sangster, RHH Scott, C Stoeckl, C Zulick, K Krushelnick

Abstract:

Experiments were performed using the Omega EP laser, operating at 740 J of energy in 8 ps (90 TW), which provides extreme conditions relevant to fast ignition studies. A carbon and hydrogen plasma plume was used as the underdense target and the interaction of the laser pulse propagating and channeling through the plasma was imaged using proton radiography. The early time expansion, channel evolution, filamentation, and self-correction of the channel was measured on a single shot via this method. A channel wall modulation was observed and attributed to surface waves. After around 50 ps, the channel had evolved to show bubblelike structures, which may be due to postsoliton remnants. © 2011 American Physical Society.
More details from the publisher
More details

Particle acceleration: Pushing protons with photons

Nature Photonics 5:3 (2011) 134-135
More details from the publisher

Production of picosecond, kilojoule, petawatt laser pulses via Raman amplification of nanosecond pulses

(2011)

Authors:

R Trines, F Fiuza, R Bingham, RA Fonseca, LO Silva, RA Cairns, PA Norreys
More details from the publisher

Experimental results performed in the framework of the HiPER European Project

Proceedings of SPIE - The International Society for Optical Engineering 8080 (2011)

Authors:

D Batani, M Koenig, S Baton, F Perez, LA Gizzi, P Koester, L Labate, J Honrubia, A Debayle, J Santos, G Schurtz, S Hulin, X Ribeyre, C Fourment, P Nicolai, B Vauzour, L Gremillet, W Nazarov, J Pasley, G Tallents, M Richetta, K Lancaster, C Spindloe, M Tolley, D Neely, P Norreys, M Kozlová, J Nejdl, B Rus, L Antonelli, A Morace, L Volpe, J Davies, J Wolowski, J Badziak

Abstract:

This paper presents the goals and some of the results of experiments conducted within the Working Package 10 (Fusion Experimental Programme) of the HiPER Project. These experiments concern the study of the physics connected to "Advanced Ignition Schemes", i.e. the Fast Ignition and the Shock Ignition Approaches to Inertial Fusion. Such schemes are aimed at achieving a higher gain, as compared to the classical approach which is used in NIF, as required for future reactors, and making fusion possible with smaller facilities. In particular, a series of experiments related to Fast Ignition were performed at the RAL (UK) and LULI (France) Laboratories and were addressed to study the propagation of fast electrons (created by a short-pulse ultra-high-intensity beam) in compressed matter, created either by cylindrical implosions or by compression of planar targets by (planar) laser-driven shock waves. A more recent experiment was performed at PALS and investigated the laser-plasma coupling in the 1016 W/cm2 intensity regime of interest for Shock Ignition. © 2011 SPIE.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • Current page 35
  • Page 36
  • Page 37
  • Page 38
  • Page 39
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet