Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

Proton radiography of intense-laser-irradiated wire-attached cone targets

IEEE Transactions on Plasma Science 39:11 PART 1 (2011) 2822-2823

Authors:

T Yabuuchi, H Sawada, T Bartal, D Batani, LA Gizzi, MH Key, AJ MacKinnon, HS McLean, PA Norreys, PK Patel, RB Stephens, C Spindloe, W Theobald, MS Wei, FN Beg

Abstract:

Measurements of extreme electrostatic and magnetic fields are of interest for the study of high-energy-density plasmas. Results of proton deflectometry of cone-wire targets that are of interest to fast-ignition inertial confinement fusion are presented. © 2006 IEEE.
More details from the publisher

Present states and future prospect of fast ignition realization experiment (FIREX) with Gekko and LFEX Lasers at ILE

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 653:1 (2011) 84-88

Authors:

M Koga, Y Arikawa, H Azechi, Y Fujimoto, S Fujioka, H Habara, Y Hironaka, H Homma, H Hosoda, T Jitsuno, T Johzaki, J Kawanaka, R Kodama, K Mima, N Miyanaga, M Murakami, H Nagatomo, M Nakai, Y Nakata, H Nakamura, H Nishimura, T Norimatsu, Y Sakawa, N Sarukura, K Shigemori, H Shiraga, T Shimizu, H Takabe, M Tanabe, KA Tanaka, T Tanimoto, T Tsubakimoto, T Watari, A Sunahara, M Isobe, A Iwamoto, T Mito, O Motojima, T Ozaki, H Sakagami, T Taguchi, Y Nakao, H Cai, M Key, P Norreys, J Pasley

Abstract:

The fast ignition realization experiment (FIREX) project is progressing. The new short pulse laser system, LFEX laser, has been completely assembled and one of the four beamlets is now in operation. A fast-ignition experiment was performed using this single short pulse combined with the Gekko XII implosion laser. The energy of the GXII implosion laser was about 2 kJ and the pulse width was 1.5 ns. The energy of the LFEX laser was increased upto 800 J and two pulse durations 5 and 1.6 ps were compared. Targets were deuterated plastic shells with gold cones. It was found that the neutron yield was increased by a factor of 30 as a result of the fast electron-induced heating in LFEX 1.6 ps shot. The estimated coupling efficiency between the LFEX laser pulse and the compressed fuel was low (less than 5%). This may be due to pre-plasma formed by light arriving at the target before the main laser pulse. Further investigations and attempts to overcome these problems are now in progress. © 2011 Elsevier B.V.
More details from the publisher

Studying ignition schemes on European laser facilities

Nuclear Fusion 51:9 (2011)

Authors:

S Jacquemot, F Amiranoff, SD Baton, JC Chanteloup, C Labaune, M Koenig, DT Michel, F Perez, HP Schlenvoigt, B Canaud, C Cherfils Clérouin, G Debras, S Depierreux, J Ebrardt, D Juraszek, S Lafitte, P Loiseau, JL Miquel, F Philippe, C Rousseaux, N Blanchot, CB Edwards, P Norreys, S Atzeni, A Schiavi, J Breil, JL Feugeas, L Hallo, M Lafon, X Ribeyre, JJ Santos, G Schurtz, V Tikhonchuk, A Debayle, JJ Honrubia, M Temporal, D Batani, JR Davies, F Fiuza, RA Fonseca, LO Silva, LA Gizzi, P Koester, L Labate, J Badziak, O Klimo

Abstract:

Demonstrating ignition and net energy gain in the near future on MJ-class laser facilities will be a major step towards determining the feasibility of Inertial Fusion Energy (IFE), in Europe as in the United States. The current status of the French Laser MégaJoule (LMJ) programme, from the laser facility construction to the indirectly driven central ignition target design, is presented, as well as validating experimental campaigns, conducted, as part of this programme, on various laser facilities. However, the viability of the IFE approach strongly depends on our ability to address the salient questions related to efficiency of the target design and laser driver performances. In the overall framework of the European HiPER project, two alternative schemes both relying on decoupling target compression and fuel heating - fast ignition (FI) and shock ignition (SI) - are currently considered. After a brief presentation of the HiPER project's objectives, FI and SI target designs are discussed. Theoretical analysis and 2D simulations will help to understand the unresolved key issues of the two schemes. Finally, the on-going European experimental effort to demonstrate their viability on currently operated laser facilities is described. © 2011 IAEA, Vienna.
More details from the publisher

Production of picosecond, kilojoule, and petawatt laser pulses via Raman amplification of nanosecond pulses

Physical Review Letters 107:10 (2011)

Authors:

RMGM Trines, F Fiúza, R Bingham, RA Fonseca, LO Silva, RA Cairns, PA Norreys

Abstract:

Raman amplification in plasma has been promoted as a means of compressing picosecond optical laser pulses to femtosecond duration to explore the intensity frontier. Here we show for the first time that it can be used, with equal success, to compress laser pulses from nanosecond to picosecond duration. Simulations show up to 60% energy transfer from pump pulse to probe pulse, implying that multikilojoule ultraviolet petawatt laser pulses can be produced using this scheme. This has important consequences for the demonstration of fast-ignition inertial confinement fusion. © 2011 American Physical Society.
More details from the publisher
More details

The zero vector potential mechanism of attosecond absorption

Physics of Plasmas 18:5 (2011)

Authors:

T Baeva, S Gordienko, APL Robinson, PA Norreys

Abstract:

A new mechanism for the absorption of energy during the interaction between an ultra-intense laser pulse and a sharp-edged overdense plasma, which we term the zero vector potential (ZVP) mechanism, is presented. The ZVP-mechanism is a nonponderomotive absorption mechanism that should dominate in the interaction of very strong short laser pulses (a0≫1) with overdense plasmas in the case of sharp density gradients. In the ZVP-mechanism the existence of moving zeroes in the vector potential of the relativistic skin layer is crucial to the generation of both fast electron bunches and coherent x-rays. We demonstrate that the laser energy is absorbed from the plasma on the attosecond timescale in the form of electron bunches with unprecedentedly short duration. The numerical simulations are able to validate all qualitative and quantitative aspects of the ZVP-mechanism. © 2011 American Institute of Physics.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • Current page 34
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet