Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

Zero vector potential mechanism of attosecond absorption in strongly relativistic plasmas

(2010)

Authors:

T Baeva, S Gordienko, APL Robinson, PA Norreys
More details from the publisher

Micron-scale fast electron filaments and recirculation determined from rear-side optical emission in high-intensity laser-solid interactions

New Journal of Physics 12 (2010)

Authors:

C Bellei, SR Nagel, S Kar, A Henig, S Kneip, C Palmer, A Sävert, L Willingale, D Carroll, B Dromey, JS Green, K Markey, P Simpson, RJ Clarke, H Lowe, D Neely, C Spindloe, M Tolley, MC Kaluza, SPD Mangles, P McKenna, PA Norreys, J Schreiber, M Zepf, JR Davies, K Krushelnick, Z Najmudin

Abstract:

The transport of relativistic electrons generated in the interaction of petawatt class lasers with solid targets has been studied through measurements of the second harmonic optical emission from their rear surface. The high degree of polarization of the emission indicates that it is predominantly optical transition radiation (TR). A halo that surrounds the main region of emission is also polarized and is attributed to the effect of electron recirculation. The variation of the polarization state and intensity of radiation with the angle of observation indicates that the emission of TR is highly directional and provides evidence for the presence of μm-size filaments. A brief discussion on the possible causes of such a fine electron beam structure is given. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
More details from the publisher

Observation of post-soliton expansion following laser propagation through an underdense plasma

(2010)

Authors:

G Sarri, 1DK Singh, 2JR Davies, 2KL Lancaster, 3EL Clark, 4S Hassan, 4J Jiang, 2N Kageiwa, N Lopes, A Rehman, C Russo, RHH Scott, T Tanimoto, Z Najmudin, KA Tanaka, M Tatarakis, M Borghesi, PA Norreys
More details from the publisher

Electron trapping and acceleration on a downward density ramp: A two-stage approach

New Journal of Physics 12 (2010)

Authors:

RMGM Trines, R Bingham, Z Najmudin, S Mangles, LO Silva, R Fonseca, PA Norreys

Abstract:

In a recent experiment at Lawrence Berkeley National Laboratory (Geddes et al 2008 Phys. Rev. Lett. 100 215004), electron bunches with about 1 MeV mean energy and small absolute energy spread (about 0.3 MeV) were produced by plasma wave breaking on a downward density ramp. It was then speculated that such a bunch might be accelerated further in a plasma of low constant density, while mostly preserving its small absolute energy spread. This would then lead to a bunch with a high mean energy and very low relative energy spread. In this paper, trapping of a low-energy, low-spread electron bunch on a downward density ramp, followed by acceleration in a constant-density plasma, has been explored through particle-in-cell simulations. It has been found that the scheme works best when it is used as a separate injection stage for a laserwakefield accelerator, where the injection and acceleration stages are separated by a vacuum gap. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
More details from the publisher

Controlling implosion symmetry around a deuterium-tritium target

Science 327:5970 (2010) 1208-1210

Abstract:

Fusion power is a step closer with the demonstration of control over the extreme thermal radiation pressure created by high-power laser beams within a cavity.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 34
  • Page 35
  • Page 36
  • Page 37
  • Current page 38
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet