Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

Design of the 10 PW OPCPA facility for the Vulcan laser

Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference: 2010 Laser Science to Photonic Applications, CLEO/QELS 2010 (2010)

Authors:

I Musgrave, O Chekhlov, J Collier, R Clarke, A Dunne, S Hancock, R Heathcote, C Hernandez-Gomez, M Galimberti, A Lyachev, P Matousek, D Neely, P Norreys, I Ross, Y Tang, T Winstone, G New

Abstract:

We present the progress made in developing IOPW OPCPA facility for the Vulcan laser to produce pulses with focused intensities >1023 Wcm-2. This power level will be delivered by generating pulses with >300J in 30fs. These pulses will be delivered to two target areas: in one target area they will be combined with the existing Vulcan Petawatt beamline and a new target area will be created for high intensity interactions. © 2010 Optical Society of America.
More details
More details from the publisher

Laser-driven fast electron collimation in targets with resistivity boundary

Physical Review Letters 105:13 (2010)

Authors:

B Ramakrishna, S Kar, APL Robinson, DJ Adams, K Markey, MN Quinn, XH Yuan, P McKenna, KL Lancaster, JS Green, RHH Scott, PA Norreys, J Schreiber, M Zepf

Abstract:

We demonstrate experimentally that the relativistic electron flow in a dense plasma can be efficiently confined and guided in targets exhibiting a high-resistivity-core-low-resistivity-cladding structure analogous to optical waveguides. The relativistic electron beam is shown to be confined to an area of the order of the core diameter (50μm), which has the potential to substantially enhance the coupling efficiency of electrons to the compressed fusion fuel in the Fast Ignitor fusion in full-scale fusion experiments. © 2010 The American Physical Society.
More details from the publisher
More details

Zero vector potential mechanism of attosecond absorption in strongly relativistic plasmas

(2010)

Authors:

T Baeva, S Gordienko, APL Robinson, PA Norreys
More details from the publisher

Micron-scale fast electron filaments and recirculation determined from rear-side optical emission in high-intensity laser-solid interactions

New Journal of Physics 12 (2010)

Authors:

C Bellei, SR Nagel, S Kar, A Henig, S Kneip, C Palmer, A Sävert, L Willingale, D Carroll, B Dromey, JS Green, K Markey, P Simpson, RJ Clarke, H Lowe, D Neely, C Spindloe, M Tolley, MC Kaluza, SPD Mangles, P McKenna, PA Norreys, J Schreiber, M Zepf, JR Davies, K Krushelnick, Z Najmudin

Abstract:

The transport of relativistic electrons generated in the interaction of petawatt class lasers with solid targets has been studied through measurements of the second harmonic optical emission from their rear surface. The high degree of polarization of the emission indicates that it is predominantly optical transition radiation (TR). A halo that surrounds the main region of emission is also polarized and is attributed to the effect of electron recirculation. The variation of the polarization state and intensity of radiation with the angle of observation indicates that the emission of TR is highly directional and provides evidence for the presence of μm-size filaments. A brief discussion on the possible causes of such a fine electron beam structure is given. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
More details from the publisher

Observation of post-soliton expansion following laser propagation through an underdense plasma

(2010)

Authors:

G Sarri, 1DK Singh, 2JR Davies, 2KL Lancaster, 3EL Clark, 4S Hassan, 4J Jiang, 2N Kageiwa, N Lopes, A Rehman, C Russo, RHH Scott, T Tanimoto, Z Najmudin, KA Tanaka, M Tatarakis, M Borghesi, PA Norreys
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 34
  • Page 35
  • Page 36
  • Page 37
  • Current page 38
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet