Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Dr Scott Osprey FRMetS

Senior NCAS Research Scientist

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
Scott.Osprey@physics.ox.ac.uk
Telephone: 01865 (2)82434,01865 (2)72923
Atmospheric Physics Clarendon Laboratory, room 111
National Centre for Atmospheric Science
SPARC QBOi
Explaining & Predicting Earth System Change
  • About
  • Publications

Comparison between non orographic gravity wave drag parameterizations used in QBOi models and Strateole2 constant level balloons

EGU General Assembly 2024 European Geosciences Union (2024)

Authors:

Raj Rani, François Lott, Charles McLandress, Aurélien Podglagen, Andrew Bushell, Martina Bramberger, Hyun-Kyu Lee, M Joan Alexander, James Anstey, Hye-Yeong Chun, Albert Hertzog, Bernard Legras, Elisa Manzini, Scott Osprey, Riwal Plougonven, John Scinocca, Javier Serrano, Federico Serva, Tim Stockdale, Stefan Versick
More details from the publisher
Details from ORA

Aeolus wind lidar observations of the 2019/2020 quasi-biennial oscillation disruption with comparison to radiosondes and reanalysis

Atmospheric Chemistry and Physics European Geosciences Union 24:4 (2024) 2465-2490

Authors:

Timothy P Banyard, Corwin J Wright, Scott M Osprey, Neil P Hindley, Gemma Halloran, Lawrence Coy, Paul A Newman, Neal Butchart, Martina Bramberger, M Joan Alexander

Abstract:

The quasi-biennial oscillation (QBO) was unexpectedly disrupted for only the second time in the historical record during the 2019/2020 boreal winter. As the dominant mode of atmospheric variability in the tropical stratosphere and a significant source of seasonal predictability globally, understanding the drivers behind this unusual behaviour is very important. Here, novel data from Aeolus, the first Doppler wind lidar (DWL) in space, are used to observe the 2019/2020 QBO disruption. Aeolus is the first satellite able to observe winds at high resolution on a global scale, and it is therefore a uniquely capable platform for studying the evolution of the disruption and the broader circulation changes triggered by it. This study therefore contains the first direct wind observations of the QBO from space, and it exploits measurements from a special Aeolus scanning mode, implemented to observe this disruption as it happened. Aeolus observes easterly winds of up to 20 m s−1 in the core of the disruption jet during July 2020. By co-locating with radiosonde measurements from Singapore and the ERA5 reanalysis, comparisons of the observed wind structures in the tropical stratosphere are produced, showing differences in equatorial wave activity during the disruption period. Local zonal wind biases are found in both Aeolus and ERA5 around the tropopause, and the average Aeolus-ERA5 Rayleigh horizontal line-of-sight random error is found to be 7.58 m s−1. The onset of the QBO disruption easterly jet occurs 5 d earlier in Aeolus observations compared with the reanalysis. This discrepancy is linked to Kelvin wave variances that are 3 to 6 m2 s−2 higher in Aeolus compared with ERA5, centred on regions of maximum vertical wind shear in the tropical tropopause layer that are up to twice as sharp. The enhanced lower-stratospheric westerly winds which are known to help disrupt the QBO, perhaps with increasing frequency as the climate changes, are also stronger in Aeolus observations, with important implications for the future predictability of such disruptions. An investigation into differences in the equivalent depth of the most dominant Kelvin waves suggests that slower, shorter-vertical-wavelength waves break more readily in Aeolus observations compared with the reanalysis. This analysis therefore highlights how Aeolus and future DWL satellites can deepen our understanding of the QBO, its disruptions and the tropical upper-troposphere lower-stratosphere region more generally.
More details from the publisher
Details from ORA
More details

Quasi-Biennial Oscillation

Chapter in Atmospheric Oscillations: Sources of Subseasonal-to-Seasonal Variability and Predictability, (2024) 253-275

Authors:

Y Wang, J Rao, Z Ju, SM Osprey

Abstract:

The Quasi-Biennial Oscillation (QBO) is one of the most cyclic phenomena in the atmosphere except for the annular and diurnal cycles, which provide the predictability source for subseasonal-to-seasonal forecasts on the globe. The QBO is generated by the interaction between the background circulation and the equatorial waves, which cover a wide spectrum consisting of those that are eastward-and westward-propagating. The QBO can affect the climate in both the Northern and Southern Hemispheres through at least three dynamic pathways, including the stratospheric polar vortex pathway, the subtropical downward-arching zonal wind pathway, and the tropical convection pathway. The impact of the QBO on the extratropics is projected to strengthen in future scenario experiments, although the maximum QBO wind magnitude gradually decreased in recent decades. As a newly emerging feature, the QBO disruption during the westerly phase is mainly caused by the extremely active Rossby waves from the extratropics. The QBO disruptions are likely to increase in a warmer climate background.
More details from the publisher

Measurements of the mean structure, temperature, and circulation of the MLT

Bulletin of the American Astronomical Society American Astronomical Society 55:3 (2023) 371

Authors:

Anne K Smith, Colby Brabec, Jorge Chau, Xinzhao Chu, Bernd Funke, V Lynn Harvey, McArthur Jones Jr., Aimee Merkel, Steven Miller, Martin Mlynczak, Scott Osprey, Doug Rowland, Jia Yue

Abstract:

The mean state of the MLT (mesosphere – lower thermosphere) is key in the exchange of energy, momentum, and trace species between the middle and upper atmosphere. Knowledge of the mean state wind and temperature is endangered by an upcoming gap in measurements. Needed actions include continued operation of existing space-borne instruments and rapid development of replacement options.
More details from the publisher
Details from ORA

Understanding the mechanisms for tropical surface impacts of the quasi‐biennial oscillation (QBO)

Journal of Geophysical Research: Atmospheres Wiley 128:15 (2023) e2023JD038474

Authors:

Jorge L García‐Franco, Lesley J Gray, Scott Osprey, Aleena M Jaison, Robin Chadwick, Jonathan Lin

Abstract:

The impact of the quasi-biennial oscillation (QBO) on tropical convection and precipitation is investigated through nudging experiments using the UK Met Office Hadley Center Unified Model. The model control simulations show robust links between the internally generated QBO and tropical precipitation and circulation. The model zonal wind in the tropical stratosphere was nudged above 90 hPa in atmosphere-only and coupled ocean-atmosphere configurations. The convection and precipitation in the atmosphere-only simulations do not differ between the experiments with and without nudging, which may indicate that SST-convection coupling is needed for any QBO influence on the tropical lower troposphere and surface. In the coupled experiments, the precipitation and sea-surface temperature relationships with the QBO phase disappear when nudging is applied. Imposing a realistic QBO-driven static stability anomaly in the upper-troposphere lower-stratosphere is not sufficient to simulate tropical surface impacts. The nudging reduced the influence of the lower troposphere on the upper branch of the Walker circulation, irrespective of the QBO, indicating that the upper tropospheric zonal circulation has been decoupled from the surface by the nudging. These results suggest that grid-point nudging mutes relevant feedback processes occurring at the tropopause level, including high cloud radiative effects and wave mean flow interactions, which may play a key role in stratospheric-tropospheric coupling.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet