Explaining and predicting earth system change: a world climate research programme call to action
Abstract:
The World Climate Research Programme (WCRP) envisions a world “that uses sound, relevant, and timely climate science to ensure a more resilient present and sustainable future for humankind.” This bold vision requires the climate science community to provide actionable scientific information that meets the evolving needs of societies all over the world. To realize its vision, WCRP has created five Lighthouse Activities to generate international commitment and support to tackle some of the most pressing challenges in climate science today. The overarching goal of the Lighthouse Activity on Explaining and Predicting Earth System Change is to develop an integrated capability to understand, attribute, and predict annual to decadal changes in the Earth system, including capabilities for early warning of potential high impact changes and events. This article provides an overview of both the scientific challenges that must be addressed, and the research and other activities required to achieve this goal. The work is organized in three thematic areas: (i) monitoring and modeling Earth system change; (ii) integrated attribution, prediction, and projection; and (iii) assessment of current and future hazards. Also discussed are the benefits that the new capability will deliver. These include improved capabilities for early warning of impactful changes in the Earth system, more reliable assessments of meteorological hazard risks, and quantitative attribution statements to support the Global Annual to Decadal Climate Update and State of the Climate reports issued by the World Meteorological Organization.Attribution of multi-annual to decadal changes in the climate system: The Large Ensemble Single Forcing Model Intercomparison Project (LESFMIP)
Abstract:
Multi-annual to decadal changes in climate are accompanied by changes in extreme events that cause major impacts on society and severe challenges for adaptation. Early warnings of such changes are now potentially possible through operational decadal predictions. However, improved understanding of the causes of regional changes in climate on these timescales is needed both to attribute recent events and to gain further confidence in forecasts. Here we document the Large Ensemble Single Forcing Model Intercomparison Project that will address this need through coordinated model experiments enabling the impacts of different external drivers to be isolated. We highlight the need to account for model errors and propose an attribution approach that exploits differences between models to diagnose the real-world situation and overcomes potential errors in atmospheric circulation changes. The experiments and analysis proposed here will provide substantial improvements to our ability to understand near-term changes in climate and will support the World Climate Research Program Lighthouse Activity on Explaining and Predicting Earth System Change.Impacts, processes and projections of the quasi-biennial oscillation
Abstract:
In the tropical stratosphere, deep layers of eastward and westward winds encircle the globe and descend regularly from the upper stratosphere to the tropical tropopause. With a complete cycle typically lasting almost 2.5 years, this quasi-biennial oscillation (QBO) is arguably the most predictable mode of atmospheric variability that is not linked to the changing seasons. The QBO affects climate phenomena outside the tropical stratosphere, including ozone transport, the North Atlantic Oscillation and the Madden–Julian Oscillation, and its high predictability could enable better forecasts of these phenomena if models can accurately represent the coupling processes. Climate and forecasting models are increasingly able to simulate stratospheric oscillations resembling the QBO, but exhibit common systematic errors such as weak amplitude in the lowermost tropical stratosphere. Uncertainties about the waves that force the oscillation, particularly the momentum fluxes from small-scale gravity waves excited by deep convection, make its simulation challenging. Improved representation of the processes governing the QBO is expected to lead to better forecasts of the oscillation and its impacts, increased understanding of unusual events such as the two QBO disruptions observed since 2016, and more reliable future projections of QBO behaviour under climate change.The tropical route of quasi-biennial oscillation (QBO) teleconnections in a climate model
Abstract:
The influence of the quasi-biennial oscillation (QBO) on tropical climate is demonstrated using 500-year pre-industrial control simulations from the Met Office Hadley Centre model. Robust precipitation responses to the phase of the QBO are diagnosed in the model, which show zonally asymmetric patterns that resemble the El Niño–Southern Oscillation (ENSO) impacts. These patterns are found because the frequency of ENSO events for each QBO phase is significantly different in these simulations, with more El Niño events found under the westerly phase of the QBO (QBOW) and more La Niña events for the easterly phase (QBOE). The QBO–ENSO relationship is non-stationary and subject to decadal variability in both models and observations. In addition, regression analysis shows that there is a QBO signal in precipitation that is independent of ENSO. No evidence is found to suggest that these QBO–ENSO relationships are caused by ENSO modulating the QBO in the simulations. A relationship between the QBO and a dipole of precipitation in the Indian Ocean is also found in models and observations in boreal fall, characterised by a wetter western Indian Ocean and drier conditions in the eastern part for QBOW and the opposite under QBOE conditions. The Walker circulation is significantly weaker during QBOW compared to QBOE, which could explain the observed and simulated zonally asymmetric precipitation responses at equatorial latitudes, as well as the more frequent El Niño events during QBOW. Further work, including targeted model experiments, is required to better understand the mechanisms causing these relationships between the QBO and tropical convection.Surface-to-space atmospheric waves from Hunga Tonga-Hunga Ha’apai eruption
Abstract:
The January 2022 Hunga Tonga–Hunga Haʻapai eruption was one of the most explosive volcanic events of the modern era1,2, producing a vertical plume which peaked > 50km above the Earth3. The initial explosion and subsequent plume triggered atmospheric waves which propagated around the world multiple times4. A global-scale wave response of this magnitude from a single source has not previously been observed. Here we show the details of this response, using a comprehensive set of satellite and ground-based observations to quantify it from surface to ionosphere. A broad spectrum of waves was triggered by the initial explosion, including Lamb waves5,6 propagating at phase speeds of 318.2±6 ms-1 at surface level and between 308±5 to 319±4 ms-1 in the stratosphere, and gravity waves7 propagating at 238±3 to 269±3 ms-1 in the stratosphere. Gravity waves at sub-ionospheric heights have not previously been observed propagating at this speed or over the whole Earth from a single source8,9. Latent heat release from the plume remained the most significant individual gravity wave source worldwide for >12 hours, producing circular wavefronts visible across the Pacific basin in satellite observations. A single source dominating such a large region is also unique in the observational record. The Hunga Tonga eruption represents a key natural experiment in how the atmosphere responds to a sudden point-source-driven state change, which will be of use for improving weather and climate models.