Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Siddharth Parameswaran

Professor of Physics

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials
  • Quantum optics & ultra-cold matter

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
sid.parameswaran@physics.ox.ac.uk
Telephone: 01865 273968
Rudolf Peierls Centre for Theoretical Physics, room 70.29
Hilary Term 2026: Quantum Matter 2 Course Pages
  • About
  • Research
  • Teaching
  • Publications

Textured exciton insulators

Physical Review B (condensed matter and materials physics) American Physical Society 112:3 (2025) 035129

Authors:

Yves H Kwan, Ziwei Wang, Glenn Wagner, Steven SIMON, Siddharth ASHOK PARAMESWARAN, Nick Bultinck

Abstract:

We introduce and study interacting topological states that arise in time-reversal symmetric bands with an underlying obstruction to forming localized states. If the U(1) valley symmetry linked to independent charge conservation in each time-reversal sector is spontaneously broken, the corresponding “excitonic” order parameter is forced to form a topologically nontrivial texture across the Brillouin zone. We show that the resulting phase, which we dub a textured exciton insulator, cannot be given a local-moment description because of a form of delicate topology. Using toy models of bands with Chern or Euler obstructions to localization, we construct explicit examples of the Chern or Euler texture insulators (CTIs or ETIs) they support, and demonstrate that these are generically competitive ground states at intermediate coupling. We construct field theories that capture the response properties of these new states. Finally, we identify the incommensurate Kekulé spiral phase observed in magic-angle bi- and trilayer graphene as a concrete realization of an ETI.
More details from the publisher
Details from ORA
More details

A new “framing” of non-collinear antiferromagnetism

Journal Club for Condensed Matter Physics Journal Club for Condensed Matter Physics (2025)
More details from the publisher
Details from ORA

Fractional Chern Insulators and Competing States in a Twisted MoTe$_2$ Lattice Model

(2025)

Authors:

Yuchi He, SH Simon, SA Parameswaran
More details from the publisher
Details from ArXiV

Slow measurement-only dynamics of entanglement in Pauli subsystem codes

Physical Review B (condensed matter and materials physics) American Physical Society 111 (2025) 144308

Authors:

Benedikt Placke, Siddharth Ashok Parameswaran

Abstract:

We study the non-unitary dynamics of a class of quantum circuits based on stochastically measuring check operators of subsystem quantum error-correcting codes, such as the Bacon-Shor code and its various generalizations. Our focus is on how properties of the underlying code are imprinted onto the measurement-only dynamics. We find that in a large class of codes with nonlocal stabilizer generators, at late times there is generically a nonlocal contribution to the subsystem entanglement entropy which scales with the subsystem size. The nonlocal stabilizer generators can also induce slow dynamics, since depending on the rate of competing measurements the associated degrees of freedom can take exponentially long (in system size) to purify (disentangle from the environment when starting from a mixed state) and to scramble (become entangled with the rest of the system when starting from a product state). Concretely, we consider circuits for which the nonlocal stabilizer generators of the underlying subsystem code take the form of subsystem symmetries. We present a systematic study of the phase diagrams and relevant time scales in two and three spatial dimensions for both Calderbank-Shor-Steane (CSS) and non-CSS codes, focusing in particular on the link between slow measurement-only dynamics and the geometry of the subsystem symmetry. A key finding of our work is that slowly purifying or scrambling degrees of freedom appear to emerge only in codes whose subsystem symmetries are nonlocally generated, a strict subset of those whose symmetries are simply nonlocal. We comment on the link between our results on subsystem codes and the phenomenon of Hilbert-space fragmentation in light of their shared algebraic structure.
More details from the publisher
Details from ORA
More details

Solvable Quantum Circuits in Tree+1 Dimensions

(2025)

Authors:

Oliver Breach, Benedikt Placke, Pieter W Claeys, SA Parameswaran
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet