Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Siddharth Parameswaran

Professor of Physics

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials
  • Quantum optics & ultra-cold matter

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
sid.parameswaran@physics.ox.ac.uk
Telephone: 01865 273968
Rudolf Peierls Centre for Theoretical Physics, room 70.29
  • About
  • Research
  • Teaching
  • Publications

Beyond the Freshman's Dream: Classical fractal spin liquids from matrix cellular automata in three-dimensional lattice models

(2021)

Authors:

Sounak Biswas, Yves H Kwan, SA Parameswaran
More details from the publisher

One-Dimensional Luttinger Liquids in a Two-Dimensional Moiré Lattice

(2021)

Authors:

Pengjie Wang, Guo Yu, Yves H Kwan, Yanyu Jia, Shiming Lei, Sebastian Klemenz, F Alexandre Cevallos, Ratnadwip Singha, Trithep Devakul, Kenji Watanabe, Takashi Taniguchi, Shivaji L Sondhi, Robert J Cava, Leslie M Schoop, Siddharth A Parameswaran, Sanfeng Wu
More details from the publisher

Domain wall competition in the Chern insulating regime of twisted bilayer graphene

Physical Review B: Condensed Matter and Materials Physics American Physical Society 104 (2021) 115404

Authors:

Yves H Kwan, Glenn Wagner, Nilotpal Chakraborty, Steven H Simon, Sa Parameswaran

Abstract:

We consider magic-angle twisted bilayer graphene (TBG) at filling $\nu=+3$, where experiments have observed a robust quantized anomalous Hall effect. This has been attributed to the formation of a valley- and spin-polarized Chern insulating ground state that spontaneously breaks time-reversal symmetry, and is stabilized by a hexagonal boron nitride (hBN) substrate. We identify three different types of domain wall, and study their properties and energetic selection mechanisms via theoretical arguments and Hartree-Fock calculations adapted to deal with inhomogeneous moir\'e systems. We comment on the implications of these results for transport and scanning probe experiments.
More details from the publisher
Details from ORA
More details
Details from ArXiV
More details

Kekulé spiral order at all nonzero integer fillings in twisted bilayer graphene

(2021)

Authors:

Yves H Kwan, Glenn Wagner, Tomohiro Soejima, Michael P Zaletel, Steven H Simon, Siddharth A Parameswaran, Nick Bultinck
More details from the publisher

Exciton band topology in spontaneous quantum anomalous Hall insulators: applications to twisted bilayer graphene

Physical Review Letters American Physical Society 126:13 (2021) 137601

Authors:

Yves H Kwan, Yichen Hu, Steven Simon, SA Parameswaran

Abstract:

We uncover topological features of neutral particle-hole pair excitations of correlated quantum anomalous Hall (QAH) insulators whose approximately flat conduction and valence bands have equal and opposite nonzero Chern number. Using an exactly solvable model we show that the underlying band topology affects both the center-of-mass and relative motion of particle-hole bound states. This leads to the formation of topological exciton bands whose features are robust to nonuniformity of both the dispersion and the Berry curvature. We apply these ideas to recently reported broken-symmetry spontaneous QAH insulators in substrate aligned magic-angle twisted bilayer graphene.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet