Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Siddharth Parameswaran

Professor of Physics

Research theme

  • Fields, strings, and quantum dynamics
  • Quantum materials
  • Quantum optics & ultra-cold matter

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
sid.parameswaran@physics.ox.ac.uk
Telephone: 01865 273968
Rudolf Peierls Centre for Theoretical Physics, room 70.29
  • About
  • Research
  • Teaching
  • Publications

Exciton band topology in spontaneous quantum anomalous Hall insulators: applications to twisted bilayer graphene

(2020)

Authors:

Yves H Kwan, Yichen Hu, Steven H Simon, SA Parameswaran
More details from the publisher

Excitonic fractional quantum Hall hierarchy in Moiré heterostructures

(2020)

Authors:

Yves H Kwan, Yichen Hu, Steven H Simon, SA Parameswaran
More details from the publisher

Quantum oscillations probe the Fermi surface topology of the nodal-line semimetal CaAgAs

Physical Review Research American Physical Society 2 (2020) 012055(R)

Authors:

YH Kwan, P Reiss, Y Han, M Bristow, D Prabhakaran, D Graf, A McCollam, Siddharth Ashok Parameswaran, AI Coldea

Abstract:

Nodal semimetals are a unique platform to explore topological signatures of the unusual band structure that can manifest by accumulating a nontrivial phase in quantum oscillations. Here we report a study of the de Haas–van Alphen oscillations of the candidate topological nodal line semimetal CaAgAs using torque measurements in magnetic fields up to 45 T. Our results are compared with calculations for a toroidal Fermi surface originating from the nodal ring. We find evidence of a nontrivial π phase shift only in one of the oscillatory frequencies. We interpret this as a Berry phase arising from the semiclassical electronic Landau orbit which links with the nodal ring when the magnetic field lies in the mirror (ab) plane. Furthermore, additional Berry phase accumulates while rotating the magnetic field for the second orbit in the same orientation which does not link with the nodal ring. These effects are expected in CaAgAs due to the lack of inversion symmetry. Our study experimentally demonstrates that CaAgAs is an ideal platform for exploring the physics of nodal line semimetals and our approach can be extended to other materials in which trivial and nontrivial oscillations are present.
More details from the publisher
Details from ORA
More details
Details from ArXiV

'Unhinging' the surfaces of higher-order topological insulators and superconductors

Physical Review Letters American Physical Society 124 (2020) 046801

Authors:

Apoorv Tiwari, Ming-Hao Li, BA Bernevig, Titus Neupert, SIDDHARTH ASHOK PARAMESWARAN
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Classical dimers on penrose tilings

Physical Review X American Physical Society 10 (2020) 011005

Authors:

Felix Flicker, SH Simon, Parameswaran
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • Current page 12
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet