Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
MicroPL optical setup

Professor Robert Taylor

Emeritus Professor of Condensed Matter Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum Optoelectronics
Robert.Taylor@physics.ox.ac.uk
Telephone: 01865 (2)72230
Clarendon Laboratory, room 164
orcid.org/0000-0003-2578-9645
  • About
  • Teaching
  • Positions available
  • Publications

Lasing in perovskite nanocrystals

Image of transverse modes from lasing nanocrystals
Nano Research, 14, 108, 2021

Improving the signal-to-noise ratio of femtosecond luminescence upconversion by multichannel detection

JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS 15:4 (1998) 1410-1417

Authors:

S Haacke, RA Taylor, I Bar-Joseph, MJSP Brasil, M Hartig, B Deveaud
More details from the publisher

Optical gain in GaN epilayers

APPLIED PHYSICS LETTERS 73:2 (1998) 199-201

Authors:

S Hess, RA Taylor, JF Ryan, B Beaumont, P Gibart
More details from the publisher

Time-resolved bandgap renormalization and gain in GaN epilayers

(1998) 300-303

Authors:

S Hess, RA Taylor, JF Ryan, B Beaumont, P Gibart, NJ Cain, V Roberts, JS Roberts

Abstract:

We present optical gain and loss spectra measured over a range of carrier densities at low temperature in hexagonal GaN epilayers. We have determined the optical loss directly to be similar to 80 cm(-1). Photoluminescence spectra show that stimulated emission in our samples arises from electron-hole plasma recombination. Time-resolved pump-probe transmission experiments have shown that there is considerable bandgap renormalization for carrier densities at which stimulated emission occurs.
More details

Relevance of dephasing processes for the ultrafast rise of emission from resonantly created excitons in quantum wells

PHYS STATUS SOLIDI B 204:1 (1997) 35-38

Authors:

S Haacke, G Hayes, RA Taylor, B Deveaud, R Zimmermann, I BarJoseph

Abstract:

We present a comparative study of time-integrated four-wave-mixing and femtosecond emission under resonant excitation on excitons in weakly disordered GaAs quantum wells. At highest exciton densities when dephasing dominates the spectral width (homogeneous broadening), we find that the rise time of the incoherent luminescence signal is given by T-2/2. At lowest densities, optical coherence times approach the exciton radiative lifetime (15 to 20 ps). This confirms our previous result that coherent resonant Rayleigh scattering is responsible for the short rise time of the excitonic emission. We also show clear evidence for dephasing due to exciton-phonon interaction, as the rise time of the emission decreases dramatically when the sample temperature is increased.
More details from the publisher

Time-resolved relaxation oscillations in gain-clamped semiconductor optical amplifiers by pump and probe measurements

Quantum and Semiclassical Optics Journal of the European Optical Society Part B IOP Publishing 9:5 (1997) 675

Authors:

T Hessler, S Haacke, JL Pleumeekers, PE Selbmann, MA Dupertuis, B Deveaud, RA Taylor, P Doussière, M Bachmann, T Ducellier, JY Emery
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 79
  • Page 80
  • Page 81
  • Page 82
  • Current page 83
  • Page 84
  • Page 85
  • Page 86
  • Page 87
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet