Observation of high-energy astrophysical neutrinos in three years of IceCube data
Physical Review Letters American Physical Society 113:10 (2014) 101101-101101
Abstract:
A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV-PeV range at the level of 10(-8) GeV cm-2 s-1 sr-1 per flavor and reject a purely atmospheric explanation for the combined three-year data at 5.7σ. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotropic arrival directions, suggesting either numerous or spatially extended sources. The three-year data set, with a live time of 988 days, contains a total of 37 neutrino candidate events with deposited energies ranging from 30 to 2000 TeV. The 2000-TeV event is the highest-energy neutrino interaction ever observed.A hadronic explanation of the lepton anomaly
Journal of Physics: Conference Series IOP Publishing 531:1 (2014) 012008-012008
Abstract:
The rise in the positron fraction, observed by PAMELA, Fermi-LAT and most recently by AMS-02, has created a lot of interest, fuelled by speculations about an origin in dark matter annihilation in the Galactic halo. However, other channels, e.g. antiprotons or gamma-rays, now severely constrain dark matter interpretations, thus requiring astrophysical sources of positrons. We have investigated the possibility that supernova remnants, the most likely sources of Galactic cosmic rays, can in fact also produce a hard spectrum of secondary positrons, by spallation and acceleration at the shock. This mechanism is guaranteed if hadronic CRs are present and would also lead to observable signatures in other secondary channels like the boron-to-carbon or antiproton-to-proton ratios. If such features were borne out by upcoming AMS-02 data, this would rule out other explanations.A SEARCH FOR POINT SOURCES OF EeV PHOTONS
The Astrophysical Journal American Astronomical Society 789:2 (2014) 160
Search for non-relativistic Magnetic Monopoles with IceCube
European Physical Journal C Springer Verlag C74:7 (2014) 2938-2938
Abstract:
The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting $1\,\mathrm{km}^3$ of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the GUT (Grand Unified Theory) era shortly after the Big Bang. These monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of $10^{-27}\,\mathrm{cm^2}$ to $10^{-21}\,\mathrm{cm^2}$. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of $10^{-22}\,(10^{-24})\,\mathrm{cm^2}$ the flux of non-relativistic GUT monopoles is constrained up to a level of $\Phi_{90} \le 10^{-18}\,(10^{-17})\,\mathrm{cm^{-2}s^{-1}sr^{-1}}$ at a 90% confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections.Fingerprints of Galactic Loop I on the Cosmic Microwave Background
Astrophys.J. 789 (2014) L29-L29