Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
where I'd like to be ...

Prof Subir Sarkar

Professor Emeritus

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
Subir.Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73962
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Old homepage
Brief CV
  • About
  • Research
  • Teaching
  • Service
  • Outreach
  • Awards/News
  • IceCube@Oxford
  • Publications

IceCube

Physics World 2013 Breakthrough of the Year
IceCube at Oxford

I am a member since 2004 of the IceCube collaboration which discovered cosmic high energy neutrinos and identified some of their astrophysical sources.

IceCube @ Oxford

How rare is the Bullet Cluster (in a ΛCDM universe)?

Journal of Cosmology and Astroparticle Physics IOP Publishing 1504:4 (2015) 050-050

Authors:

David Kraljic, Subir Sarkar

Abstract:

The Bullet Cluster (1E 0657-56) is well-known as providing visual evidence of dark matter but it is potentially incompatible with the standard ΛCDM cosmology due to the high relative velocity of the two colliding clusters. Previous studies have focussed on the probability of such a high relative velocity amongst selected candidate systems. This notion of 'probability' is however difficult to interpret and can lead to paradoxical results. Instead, we consider the expected number of Bullet-like systems on the sky up to a specified redshift, which allows for direct comparison with observations. Using a Hubble volume N-body simulation with high resolution we investigate how the number of such systems depends on the masses of the halo pairs, their separation, and collisional angle. This enables us to extract an approximate formula for the expected number of halo-halo collisions given specific collisional parameters. We use extreme value statistics to analyse the tail of the pairwise velocity distribution and demonstrate that it is fatter than the previously assumed Gaussian form. We estimate that the number of dark matter halo pairs as or more extreme than 1E 0657-56 in mass, separation and relative velocity is 1.3+2.0-0.6 up to redshift z = 0.3. However requiring the halos to have collided and passed through each other as is observed decreases this number to only 0.1. The discovery of more such systems would thus indeed present a challenge to the standard cosmology.
More details from the publisher
Details from ORA
More details
Details from ArXiV

On the interpretation of dark matter self-interactions in Abell 3827

(2015)

Authors:

Felix Kahlhoefer, Kai Schmidt-Hoberg, Janis Kummer, Subir Sarkar
More details from the publisher

Dark matter annihilation and decay in dwarf spheroidal galaxies: The classical and ultrafaint dSphs

(2015)

Authors:

V Bonnivard, C Combet, M Daniel, S Funk, A Geringer-Sameth, JA Hinton, D Maurin, JI Read, S Sarkar, MG Walker, MI Wilkinson
More details from the publisher

Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

Phys. Rev. American Physical Society D91:7 (2015) 072004-072004

Abstract:

We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by $\Delta m^2_{32}=2.72^{+0.19}_{-0.20}\times 10^{-3}\,\mathrm{eV}^2$ and $\sin^2\theta_{23} = 0.53^{+0.09}_{-0.12}$ (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube

European Physical Journal C Springer Berlin Heidelberg C75:3 (2015) 116-116

Abstract:

We present the development and application of a generic analysis scheme for the measurement of neutrino spectra with the IceCube detector. This scheme is based on regularized unfolding, preceded by an event selection which uses a Minimum Redundancy Maximum Relevance algorithm to select the relevant variables and a random forest for the classification of events. The analysis has been developed using IceCube data from the 59-string configuration of the detector. 27,771 neutrino candidates were detected in 346 days of livetime. A rejection of 99.9999 % of the atmospheric muon background is achieved. The energy spectrum of the atmospheric neutrino flux is obtained using the TRUEE unfolding program. The unfolded spectrum of atmospheric muon neutrinos covers an energy range from 100 GeV to 1 PeV. Compared to the previous measurement using the detector in the 40-string configuration, the analysis presented here, extends the upper end of the atmospheric neutrino spectrum by more than a factor of two, reaching an energy region that has not been previously accessed by spectral measurements.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 155
  • Page 156
  • Page 157
  • Page 158
  • Current page 159
  • Page 160
  • Page 161
  • Page 162
  • Page 163
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet