Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Device Performance of Emerging Photovoltaic Materials (Version 6)

Advanced Energy Materials Wiley (2025) e05525

Authors:

Osbel Almora, Agustin O Alvarez, Derya Baran, Carlos I Cabrera, Luigi A Castriotta, Bruno Ehrler, Sule Erten‐Ela, Kenjiro Fukuda, Fei Guo, Jens Hauch, Anita WY Ho‐Baillie, T Jesper Jacobsson, Rene AJ Janssen, Thomas Kirchartz, Maria A Loi, Richard R Lunt, Xavier Mathew, Jie Min, David B Mitzi, Mohammad K Nazeeruddin, Ana F Nogueira, Ulrich W Paetzold, Nam‐Gyu Park, Barry P Rand, Henry Snaith

Abstract:

This 6th annual Emerging PV Report surveys peer‐reviewed advances since August 2024 across perovskite, organic, kesterite, matildite, antimony seleno‐sulfide, selenium, and tandem solar cell architectures. Updated graphs, tables, and analyses compile the best‐performing devices from the emerging‐pv.org database, benchmarking power conversion efficiency (PCE), flexible photovoltaic fatigue factor (F), light‐utilization efficiency (LUE), and stability‐test energy yield (STEY) against detailed‐balance efficiency limits as functions of photovoltaic bandgap, and average visible transmittance (AVT) for (semi‐)transparent devices. Beyond efficiency, operational stability is assessed via degradation rates (DR) and t95 lifetimes. Highlights include single‐junction perovskite cells with efficiencies above 27%, organics surpassing 20%, and new Si/perovskite tandems exceeding 34%. Although multiple record efficiencies have been achieved this year, advances in mechanical robustness and operational stability remain inconsistent, especially in complex tandem stacks, emphasizing the urgent need for standardized protocols, improved large‐area homogeneity, and database‐driven benchmarks to accelerate the transition from laboratory demonstrations to scalable, real‐world deployment.
More details from the publisher
Details from ORA
More details

Tailoring a Lead-Free Organic–Inorganic Halobismuthate for Large Piezoelectric Effect

Journal of the American Chemical Society (2025)

Authors:

Esther YH Hung, Benjamin M Gallant, Robert Harniman, Jakob Möbs, Santanu Saha, Khaled Kaja, Charles Godfrey, Shrestha Banerjee, Nikolaos Famakidis, Harish Bhaskaran, Marina R Filip, Paolo Radaelli, Nakita K Noel, Dominik J Kubicki, Harry C Sansom, Henry J Snaith

Abstract:

Molecular piezoelectrics are a potentially disruptive technology, enabling a new generation of self-powered electronics that are flexible, high performing, and inherently low in toxicity. Although significant efforts have been made toward understanding their structural design by targeted manipulation of phase transition behavior, the resulting achievable piezoresponse has remained limited. In this work, we use a low-symmetry, zero-dimensional (0D) inorganic framework alongside a carefully selected 'quasi-spherical' organic cation to manipulate organic-inorganic interactions and thus form the hybrid, piezoelectric material [(CH3)3NCH2I]3Bi2I9. Using variable-temperature single crystal X-ray diffraction and solid-state nuclear magnetic resonance spectroscopy, we demonstrate that this material simultaneously exhibits an order-disorder and displacive symmetry-breaking phase transition. This phase transition is mediated by halogen bonding between the organic and inorganic frameworks and results in a large piezoelectric response, d33 = 161.5 pm/V. This value represents a 4-fold improvement on previously reported halobismuthate piezoelectrics and is comparable to those of commercial inorganic piezoelectrics, thus offering a new pathway toward low-cost, low-toxicity mechanical energy harvesting and actuating devices.
More details from the publisher
More details
More details

Assessment of soil impacts from lead release by lead-halide perovskite solar cells based on outdoor leaching tests

EES Solar Royal Society of Chemistry (2025)

Authors:

Anika Sidler, Felix Schmidt, Bastien Vallat, Fionnuala Grifoni, Severin N Habisreutinger, Riikka Suhonen, Henry J Snaith, Andreas Schäffer, Markus Lenz

Abstract:

Perovskite solar cells represent a promising technology in the photovoltaic industry due to their high power conversion efficiency, potential for cost-effective manufacturing and versatile applications. The most stable and efficient perovskites to date rely on lead (Pb), raising concerns about leaching into the environment; however Pb release so far has only been quantified under laboratory conditions, and no field-based assessment under real outdoor expsosure has yet evaluated this risk. The present study quantified Pb leaching from various metal-halide perovskite compositions, device stacks and encapsulation approaches in a rooftop installation for up to 9 months. Pb leaching was low across all tested configurations, even in intentionally damaged materials. Glass–glass encapsulated tandem devices shattered by hail and plastic-encapsulated samples damaged by 100 µm pinholes released only 0.07% ± 0.01% and 0.15% ± 0.14% of their initial Pb, respectively, likely due to the slow diffusion of Pb cations in water. The highest leaching (4.81% ± 0.02%) occurred in unlaminated laboratory devices, demonstrating the importance of proper lamination. A self-developed freeware web tool was used to calculate predicted soil concentrations and evaluate potential impacts. Even for unlaminated devices, concentrations would only slightly exceed natural background levels (5.6 mg kg−1 increase), with negligible effects on soil fertility. A hypothetical worst-case scenario assuming a 1000 nm thick perovskite layer and complete Pb leaching onto a narrow strip of soil predicted a negative impact on soil fertility; however remediation would still not be required under Swiss environmental regulations. Overall, current industry-standard encapsulation limits Pb leaching to levels that almost completely mitigate negative impacts on soil health.
More details from the publisher
Details from ORA

Ligand Engineering for Precise Control of Strongly-Confined CsPbI3 Nanoplatelet Superlattices for Efficient Light-Emitting Diodes

(2025)

Authors:

Jongbeom Kim, Woo Hyeon Jeong, Junzhi Ye, Allison Nicole Arber, Vikram, Donghan Kim, Yi-Teng Huang, Yixin Wang, Dongeun Kim, Dongryeol Lee, Chia-Yu Chang, Xinyu Shen, Sung Yong Bae, Ashish Gaurav, Akshay Rao, Henry J Snaith, M Saiful Islam, Bo Ram Lee, Myoung Hoon Song, Robert LZ Hoye

Functional Additive Incorporation Enhances the Performance of Semi-Transparent Perovskite Solar Cells

ACS Energy Letters (2025)

Authors:

Bhavna Sharma, Krishanu Dey, Mohammad Adil Afroz, Henry J Snaith, Soumitra Satapathi

Abstract:

Semi-transparent perovskite solar cells (ST-PSCs) have shown great potential in building-integrated photovoltaics. However, the performance of ST-PSCs is still far from achieving their true potential. Herein, a functional additive, [4-(trifluoromethyl)phenyl] sulfonyl chloride (TFBSC), is incorporated into the perovskite precursor solution to regulate the crystallization process and reduce defects in the perovskite films. The addition of TFBSC improves the perovskite film morphology and increases the charge carrier lifetime and photoluminescence quantum efficiency, compared with the control perovskite films. As a result, the champion device modified with TFBSC shows a power conversion efficiency (PCE) of 14.75% with a light utilization efficiency (LUE) of 3.92%, whereas the control device shows PCE and LUE values of 10.71% and 2.96%, respectively. Moreover, the unencapsulated TFBSC-modified device retains ∼90% of its initial PCE after 1500 h of storage under ambient conditions (relative humidity of ∼30%–40%). These findings could provide new avenues to develop high performance ST-PSCs for smart building applications.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet