Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Accessing Metal‐Containing Species in Tin–Lead Perovskite Precursor Solutions via Molecular Strategies Guided by the Hard–Soft Acid–Base Principle

Angewandte Chemie International Edition Wiley (2025) e202514010

Authors:

Shuaifeng Hu, Xinru Sun, Wentao Liu, Luca Gregori, Pei Zhao, Jorge Pascual, André Dallmann, Akash Dasgupta, Fengjiu Yang, Guixiang Li, Mahmoud Aldamasy, Silver‐Hamill Turren‐Cruz, Marion A Flatken, Sheng Fu, Yasuko Iwasaki, Richard Murdey, Armin Hoell, Susan Schorr, Steve Albrecht, Shangfeng Yang, Antonio Abate, Atsushi Wakamiya, Filippo De Angelis, Meng Li, Henry J Snaith

Abstract:

The properties of metal‐centred species in metal halide perovskite precursor solutions substantially influence the formation and evolution of colloidal particles, which in turn dictate the crystallisation process and the film quality. In this work, we assess the “hard” and “soft” Lewis acid characteristics of Sn2+ and Pb2+ cations as a strategy to modulate the chemical environment of these metal‐containing species in mixed‐metal tin–lead perovskite precursor solutions. We observe enhanced simultaneous access to both metal centres upon adding compounds with functional groups suggested by the hard–soft acid–base principle. Theoretical calculations suggest that the hard base carboxyl group preferentially interacts with Sn2+‐based species, while the softer base thiol group also targets Pb2+‐based species. By effectively accessing and manipulating possible classes of inorganic species and their colloidal particle properties in the precursor solutions, we achieve 1.26 eV perovskite polycrystalline films exhibiting enhanced structural and optoelectronic quality, giving the best quasi‐Fermi level splitting values of up to 0.95 eV. As a result, the solar cell devices demonstrate efficiency values of up to 23.3% with an extended operational lifetime, retaining 80% of their initial efficiency after over 280 and 180 h of maximum power point tracking under simulated AM1.5G illumination at 25 and 65 °C, respectively.
More details from the publisher
Details from ORA
More details
More details

Approaching the radiative limits for wide bandgap perovskite solar cells using fullerene blend electron transport interlayers †

EES Solar Royal Society of Chemistry (2025)

Authors:

Josephine L Surel, Pietro Caprioglio, Joel A Smith, Akash Dasgupta, Francesco Furlan, Charlie Henderson, Fengning Yang, Benjamin M Gallant, Seongrok Seo, Alexander Knight, Manuel Kober-Czerny, Joel Luke, David P McMeekin, Alexander I Tartakovskii, Ji-Seon Kim, Nicola Gasparini, Henry J Snaith

Abstract:

Performance losses in positive–intrinsic–negative architecture perovskite solar cells are dominated by nonradiative recombination at the perovskite/organic electron transport layer interface, which is particularly problematic for wider bandgap perovskites. Large endeavours have been dedicated to the replacement of fullerenes, which are the most commonly used class of electron transport layers, with limited success thus far. In this work, we demonstrate blending the fullerene derivatives [6,6]-phenyl C61 butyric acid methyl ester (PCBM) and indene-C60 bis-adduct (ICBA) as a thin interlayer between 1.77 eV bandgap perovskite and an evaporated C60 layer. By tuning the fullerene blend to a trace 2% by mass of PCBM in ICBA, we remarkably form an interlayer which features improved energetic alignment with the perovskite and the PCBM : ICBA fullerene mixture, together with a stronger molecular ordering and an order of magnitude higher electron mobility than either neat PCBM or ICBA. Additional molecular surface passivation approaches are found to be beneficial in conjunction with this approach, resulting in devices with 19.5% steady state efficiency, a fill factor of 0.85 and an open-circuit voltage of 1.33 V, which is within 10% of the radiative limit of the latter two device parameters for this bandgap. This work highlights the complex nonlinear energetic behaviour with fullerene mixing, and how control of the energetics and crystallinity of these materials is crucial in overcoming the detrimental recombination losses that have historically limited perovskite solar cells.
More details from the publisher
Details from ORA

Impact of Charge Transport Layers on the Structural and Optoelectronic Properties of Coevaporated Cu 2 AgBiI 6

ACS Applied Materials & Interfaces American Chemical Society 17:28 (2025) 40363-40374

Authors:

Jae Eun Lee, Marcello Righetto, Benjamin WJ Putland, Siyu Yan, Joshua RS Lilly, Snigdha Lal, Heon Jin, Nakita K Noel, Michael B Johnston, Henry J Snaith, Laura M Herz

Abstract:

The copper–silver–bismuth–iodide compound Cu2AgBiI6 has emerged as a promising lead-free and environmentally friendly alternative to wide-bandgap lead-halide perovskites for applications in multijunction solar cells. Despite its promising optoelectronic properties, the efficiency of Cu2AgBiI6 is still severely limited by poor charge collection. Here, we investigate the impact of commonly used charge transport layers (CTLs), including poly­[bis­(4-phenyl)­(2,4,6-trimethylphenyl)­amine] (PTAA), CuI, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), and SnO2, on the structural and optoelectronic properties of coevaporated Cu2AgBiI6 thin films. We reveal that while organic transport layers, such as PTAA and PCBM, form a relatively benign interface, inorganic transport layers, such as CuI and SnO2, induce the formation of unintended impurity phases within the CuI–AgI–BiI3 solid solution space, significantly influencing structural and optoelectronic properties. We demonstrate that identification of these impurity phases requires careful cross-validation combining absorption, X-ray diffraction and THz photoconductivity spectroscopy because their structural and optoelectronic properties are very similar to those of Cu2AgBiI6. Our findings highlight the critical role of CTLs in determining the structural and optoelectronic properties of coevaporated copper–silver–bismuth–iodide thin films and underscore the need for advanced interface engineering to optimize device efficiency and reproducibility.
More details from the publisher
Details from ORA
More details
More details

Exposing binding-favourable facets of perovskites for tandem solar cells

Energy & Environmental Science Royal Society of Chemistry 18 (2025) 7680-7694

Authors:

Junke Wang, Shuaifeng Hu, Zehua Chen, Zhongcheng Yuan, Pei Zhao, Akash Dasgupta, Fengning Yang, Jin Yao, Minh Anh Truong, Gunnar Kusch, Esther Hung, Nick Schipper, Laura Bellini, Guus Aalbers, Zonghao Liu, Rachel Oliver, Atsushi Wakamiya, René Janssen, Henry Snaith

Abstract:

Improved understanding of heterojunction interfaces has enabled multijunction photovoltaic devices to achieve power conversion efficiencies that exceed the detailed-balance limit for single-junctions. For wide-bandgap perovskites, however, the pronounced energy loss across the heterojunctions of the active and charge transport layers impedes multijunction devices from reaching their full efficiency potential. Here we find that for polycrystalline perovskite films with mixed-halide compositions, the crystal termination—a factor influencing the reactivity and density of surface sites—plays a crucial role in interfacial passivation for wide-bandgap perovskites. We demonstrate that by templating the growth of polycrystalline perovskite films toward a preferred (100) facet, we can reduce the density of deep-level trap states and enhance the binding of modification ligands. This leads to a much-improved heterojunction interface, resulting in open-circuit voltages of 1.38 V for 1.77-eV single-junction perovskite solar cells. In addition, monolithic all-perovskite double-junction solar cells achieve open-circuit voltage values of up to 2.22 V, with maximum power point tracking efficiencies reaching 28.6% and 27.7% at 0.25 and 1.0 cm2 cell areas, respectively, along with improved operational and thermal stability at 85 °C. This work provides universally applicable insights into the crystalline facet-favourable surface modification of perovskite films, advancing their performance in optoelectronic applications.
More details from the publisher
Details from ORA
More details

Disentangling degradation pathways of narrow bandgap lead-tin perovskite material and photovoltaic devices

Nature Communications Nature Research 16:1 (2025) 5450

Authors:

Florine M Rombach, Akash Dasgupta, Manuel Kober-Czerny, Heon Jin, James M Ball, Joel A Smith, Michael D Farrar, Henry J Snaith

Abstract:

Narrow bandgap lead-tin perovskites are essential components of next-generation all-perovskite multi-junction solar cells. However, their poor stability under operating conditions hinders successful implementation. In this work, we systematically investigate the underlying mechanisms of this instability under combined heat and light stress (ISOS L-2 conditions) by measuring changes in phase, conductivity, recombination and current-voltage characteristics. We find an increased impact of the redistribution of mobile ions during device operation to be the primary driver of performance loss during stressing, with further losses caused by a slower increase in non-radiative recombination and background hole density. Crucially, the dominant degradation mode changes with different hole transport materials, which we attribute to variations in iodine vacancy generation rates. By quantifying the impact of these mechanisms on device performance, we provide critical insights for improving the operational stability of lead-tin perovskite solar cells.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet