Diamine surface passivation and postannealing enhance the performance of silicon-perovskite tandem solar cells
ACS Applied Materials and Interfaces American Chemical Society 17:26 (2025) 38754-38762
Abstract:
We show that the use of 1,3-diaminopropane (DAP) as a chemical modifier at the perovskite/electron-transport layer (ETL) interface enhances the power conversion efficiency (PCE) of 1.7 eV band gap mixed-halide perovskite containing formamidinium and Cs single-junction cells, primarily by increasing the open-circuit voltage (VOC) from 1.06 to 1.15 V. We find that adding a postprocessing annealing step after C60 evaporation further improves device performance. Specifically, the fill factor (FF) increases by 20% in the DAP + postannealing devices compared to the control. Using hyperspectral photoluminescence microscopy, we demonstrate that annealing helps improve compositional homogeneity at the electron-transport layer (ETL) and hole-transport layer (HTL) interfaces of the solar cell, which prevents detrimental band gap pinning in the devices and improves C60 adhesion. Using time-of-flight secondary ion mass spectrometry, we show that DAP reacts with formamidinium (FA+) present at the surface of the perovskite structure to form a larger molecular cation, 1,4,5,6-tetrahydropyrimidinium (THP+), which remains at the interface. Combining the use of DAP and annealing the C60 interface, we fabricate Si-perovskite tandems with a PCE of 25.29%, compared to 23.26% for control devices. Our study underscores the critical role of the chemical reactivity of diamines at the surface and the thermal postprocessing of the C60/Lewis-base passivator interface in minimizing device losses and enhancing solar-cell performance of wide-band-gap mixed-cation mixed-halide perovskites for tandem applications.Enhanced Stability and Linearly Polarized Emission from CsPbI$_3$ Perovskite Nanoplatelets through A-site Cation Engineering
(2025)
Mercapto-functionalized scaffold improves perovskite buried interfaces for tandem photovoltaics
Nature Communications Springer Science and Business Media LLC 16:1 (2025) 4917
Dual molecular bridges at perovskite heterointerfaces for efficient inverted solar cells
National Science Review Oxford University Press 12:7 (2025) nwaf211
Abstract:
Utilizing molecular bridges presents a promising means to enhance the performance of perovskite solar cells (PSCs). However, concurrently bridging the perovskite absorber and its two adjacent interfaces remains a significant challenge that is yet to be achieved. Here, we construct dual molecular bridges at perovskite heterointerfaces, enabled by a self-organizing additive of 4-fluoro-phenethylammonium formate (4-F-PEAFa) and a synthesized hole transporter of [2-(7H-dibenzo[c, g]carbazol-7-yl)ethyl]phosphonic acid (DBZ-2PACz). The molecular bridges spanning two interfaces lead to the formation of an ‘integral carrier transport pathway’, mitigating both non-radiative recombination and charge-transport losses in the fabricated PSC devices. We thus achieve a champion power conversion efficiency (PCE) of 26.0% (25.6% certified) in inverted PSCs, accompanied by an exceptionally high fill factor of 0.87 (maximum 0.88 from the certified devices, 97% of its Shockley–Queisser limit) and a low ideality factor of 1.06. The unencapsulated devices retain 96% of their PCEs after aging at 85°C for 2200 h and 90% after maximum power point tracking at an elevated temperature of 50°C for 973 h.Indium and Silver Recovery from Perovskite Thin Film Solar Cell Waste by Means of Nanofiltration
ACS Sustainable Resource Management American Chemical Society 2:6 (2025) 1087-1095