Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Prof Henry Snaith FRS

Professor of Physics

Sub department

  • Condensed Matter Physics

Research groups

  • Snaith group
  • Advanced Device Concepts for Next-Generation Photovoltaics
Henry.Snaith@physics.ox.ac.uk
Robert Hooke Building, room G21
  • About
  • Publications

Impact of Ion Migration on the Performance and Stability of Perovskite‐Based Tandem Solar Cells

Advanced Energy Materials Wiley (2024)

Authors:

Sahil Shah, Fengjiu Yang, Eike Köhnen, Esma Ugur, Mark Khenkin, Jarla Thiesbrummel, Bor Li, Lucas Holte, Sebastian Berwig, Florian Scherler, Paria Forozi, Jonas Diekmann, Francisco Peña‐Camargo, Marko Remec, Nikhil Kalasariya, Erkan Aydin, Felix Lang, Henry Snaith, Dieter Neher, Stefaan De Wolf, Carolin Ulbrich, Steve Albrecht, Martin Stolterfoht
More details from the publisher
More details

Development of efficient wide-bandgap perovskites and sub-cell selective characterization for all-perovskite tandem solar cells

SPIE, the international society for optics and photonics (2024) 27

Authors:

Junke Wang, Bruno Branco, Willemijn Remmerswaal, Nick Schipper, Valerio Zardetto, Laura Bellini, Martijn Wienk, Henry Snaith, René AJ Janssen
More details from the publisher

Reactive Passivation of Wide-Bandgap Organic-Inorganic Perovskites with Benzylamine.

Journal of the American Chemical Society American Chemical Society (ACS) 146:40 (2024) 27405-27416

Authors:

Suer Zhou, Benjamin M Gallant, Junxiang Zhang, Yangwei Shi, Joel Smith, James N Drysdale, Pattarawadee Therdkatanyuphong, Margherita Taddei, Declan P McCarthy, Stephen Barlow, Rachel C Kilbride, Akash Dasgupta, Ashley R Marshall, Jian Wang, Dominik J Kubicki, David S Ginger, Seth R Marder, Henry J Snaith

Abstract:

While amines are widely used as additives in metal-halide perovskites, our understanding of the way amines in perovskite precursor solutions impact the resultant perovskite film is still limited. In this paper, we explore the multiple effects of benzylamine (BnAm), also referred to as phenylmethylamine, used to passivate both FA<sub>0.75</sub>Cs<sub>0.25</sub>Pb(I<sub>0.8</sub>Br<sub>0.2</sub>)<sub>3</sub> and FA<sub>0.8</sub>Cs<sub>0.2</sub>PbI<sub>3</sub> perovskite compositions. We show that, unlike benzylammonium (BnA<sup>+</sup>) halide salts, BnAm reacts rapidly with the formamidinium (FA<sup>+</sup>) cation, forming new chemical products in solution and these products passivate the perovskite crystal domains when processed into a thin film. In addition, when BnAm is used as a bulk additive, the average perovskite solar cell maximum power point tracked efficiency (for 30 s) increased to 19.3% compared to the control devices 16.8% for a 1.68 eV perovskite. Under combined full spectrum simulated sunlight and 65 °C temperature, the devices maintained a better <i>T</i><sub>80</sub> stability of close to 2500 h while the control devices have <i>T</i><sub>80</sub> stabilities of <100 h. We obtained similar results when presynthesizing the product BnFAI and adding it directly into the perovskite precursor solution. These findings highlight the mechanistic differences between amine and ammonium salt passivation, enabling the rational design of molecular strategies to improve the material quality and device performance of metal-halide perovskites.
More details from the publisher
More details
More details

Inhibiting the Appearance of Green Emission in Mixed Lead Halide Perovskite Nanocrystals for Pure Red Emission.

Nano letters American Chemical Society (ACS) 24:39 (2024) 12045-12053

Authors:

Mutibah Alanazi, Ashley R Marshall, Yincheng Liu, Jinwoo Kim, Shaoni Kar, Henry J Snaith, Robert A Taylor, Tristan Farrow

Abstract:

Mixed halide perovskites exhibit promising optoelectronic properties for next-generation light-emitting diodes due to their tunable emission wavelength that covers the entire visible light spectrum. However, these materials suffer from severe phase segregation under continuous illumination, making long-term stability for pure red emission a significant challenge. In this study, we present a comprehensive analysis of the role of halide oxidation in unbalanced ion migration (I/Br) within CsPbI<sub>2</sub>Br nanocrystals and thin films. We also introduce a new approach using cyclic olefin copolymer (COC) to encapsulate CsPbI<sub>2</sub>Br perovskite nanocrystals (PNCs), effectively suppressing ion migration by increasing the corresponding activation energy. Compared with that of unencapsulated samples, we observe a substantial reduction in phase separation under intense illumination in PNCs with a COC coating. Our findings show that COC enhances phase stability by passivating uncoordinated surface defects (Pb<sup>2+</sup> and I<sup>-</sup>), increasing the formation energy of halide vacancies, improving the charge carrier lifetime, and reducing the nonradiative recombination density.
More details from the publisher
More details
More details

The promise and challenges of inverted perovskite solar cells

Chemical Reviews American Chemical Society 124:19 (2024) 10623-10700

Authors:

Peng Chen, Yun Xiao, Shunde Li, Xiaohan Jia, Deying Luo, Wei Zhang, Henry J Snaith, Qihuang Gong, Rui Zhu

Abstract:

Recently, there has been an extensive focus on inverted perovskite solar cells (PSCs) with a p-i-n architecture due to their attractive advantages, such as exceptional stability, high efficiency, low cost, low-temperature processing, and compatibility with tandem architectures, leading to a surge in their development. Single-junction and perovskite-silicon tandem solar cells (TSCs) with an inverted architecture have achieved certified PCEs of 26.15% and 33.9% respectively, showing great promise for commercial applications. To expedite real-world applications, it is crucial to investigate the key challenges for further performance enhancement. We first introduce representative methods, such as composition engineering, additive engineering, solvent engineering, processing engineering, innovation of charge transporting layers, and interface engineering, for fabricating high-efficiency and stable inverted PSCs. We then delve into the reasons behind the excellent stability of inverted PSCs. Subsequently, we review recent advances in TSCs with inverted PSCs, including perovskite-Si TSCs, all-perovskite TSCs, and perovskite-organic TSCs. To achieve final commercial deployment, we present efforts related to scaling up, harvesting indoor light, economic assessment, and reducing environmental impacts. Lastly, we discuss the potential and challenges of inverted PSCs in the future.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet