Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Julia Yeomans OBE FRS

Professor of Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Julia.Yeomans@physics.ox.ac.uk
Telephone: 01865 (2)76884 (college),01865 (2)73992
Rudolf Peierls Centre for Theoretical Physics, room 70.10
www-thphys.physics.ox.ac.uk/people/JuliaYeomans
  • About
  • Publications

Far-field theory for trajectories of magnetic ellipsoids in rectangular and circular channels

(2017)

Authors:

Daiki Matsunaga, Andreas Zöttl, Fanlong Meng, Ramin Golestanian, Julia M Yeomans
More details from the publisher

Entrainment and scattering in microswimmer--colloid interactions

(2017)

Authors:

Henry Shum, Julia M Yeomans
More details from the publisher

Enhanced bacterial swimming speeds in macromolecular polymer solutions

(2017)

Authors:

Andreas Zöttl, Julia M Yeomans
More details from the publisher

Electric-field-induced shape transition of nematic tactoids

Physical Review E American Physical Society 96 (2017) 022706

Authors:

Luuk Metselaar, I Dozov, K Antonova, E Belamie, P Davidson, Julia M Yeomans, Amin Doostmohammadi

Abstract:

The occurrence of new textures of liquid crystals is an important factor in tuning their optical and photonics properties. Here, we show, both experimentally and by numerical computation, that under an electric field chitin tactoids (i.e. nematic droplets) can stretch to aspect ratios of more than 15, leading to a transition from a spindle-like to a cigar-like shape. We argue that the large extensions occur because the elastic contribution to the free energy is dominated by the anchoring. We demonstrate that the elongation involves hydrodynamic flow and is reversible, the tactoids return to their original shapes upon removing the field.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Electric-field induced shape transition of nematic tactoids

(2017)

Authors:

Luuk Metselaar, Ivan Dozov, Krassimira Antonova, Emmanuel Belamie, Patrick Davidson, Julia M Yeomans, Amin Doostmohammadi
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 20
  • Page 21
  • Page 22
  • Page 23
  • Current page 24
  • Page 25
  • Page 26
  • Page 27
  • Page 28
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet