Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Julia Yeomans OBE FRS

Professor of Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Julia.Yeomans@physics.ox.ac.uk
Telephone: 01865 (2)76884 (college),01865 (2)73992
Rudolf Peierls Centre for Theoretical Physics, room 70.10
www-thphys.physics.ox.ac.uk/people/JuliaYeomans
  • About
  • Publications

Using evaporation to control capillary instabilities in micro-systems

Soft Matter Royal Society of Chemistry 47:13 (2017) 8947-8956

Authors:

RA Ledesma Aguilar, Gianluca Laghezza, Julia Yeomans, Dominic Vella

Abstract:

The instabilities of fluid interfaces represent both a limitation and an opportunity for the fabrication of small-scale devices. Just as non-uniform capillary pressures can destroy micro-electrical mechanical systems (MEMS), so they can guide the assembly of novel solid and fluid structures. In many such applications the interface appears during an evaporation process and is therefore only present temporarily. It is commonly assumed that this evaporation simply guides the interface through a sequence of equilibrium configurations, and that the rate of evaporation only sets the timescale of this sequence. Here, we use Lattice-Boltzmann simulations and a theoretical analysis to show that, in fact, the rate of evaporation can be a factor in determining the onset and form of dynamical capillary instabilities. Our results shed light on the role of evaporation in previous experiments, and open the possibility of exploiting diffusive mass transfer to directly control capillary flows in MEMS applications.
More details from the publisher
Details from ORA
More details
More details

Far-field theory for trajectories of magnetic ellipsoids in rectangular and circular channels

(2017)

Authors:

Daiki Matsunaga, Andreas Zöttl, Fanlong Meng, Ramin Golestanian, Julia M Yeomans
More details from the publisher

Entrainment and scattering in microswimmer--colloid interactions

(2017)

Authors:

Henry Shum, Julia M Yeomans
More details from the publisher

Enhanced bacterial swimming speeds in macromolecular polymer solutions

(2017)

Authors:

Andreas Zöttl, Julia M Yeomans
More details from the publisher

Electric-field-induced shape transition of nematic tactoids

Physical Review E American Physical Society 96 (2017) 022706

Authors:

Luuk Metselaar, I Dozov, K Antonova, E Belamie, P Davidson, Julia M Yeomans, Amin Doostmohammadi

Abstract:

The occurrence of new textures of liquid crystals is an important factor in tuning their optical and photonics properties. Here, we show, both experimentally and by numerical computation, that under an electric field chitin tactoids (i.e. nematic droplets) can stretch to aspect ratios of more than 15, leading to a transition from a spindle-like to a cigar-like shape. We argue that the large extensions occur because the elastic contribution to the free energy is dominated by the anchoring. We demonstrate that the elongation involves hydrodynamic flow and is reversible, the tactoids return to their original shapes upon removing the field.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • Current page 25
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet