Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Julia Yeomans OBE FRS

Professor of Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Julia.Yeomans@physics.ox.ac.uk
Telephone: 01865 (2)76884 (college),01865 (2)73992
Rudolf Peierls Centre for Theoretical Physics, room 70.10
www-thphys.physics.ox.ac.uk/people/JuliaYeomans
  • About
  • Publications

Celebrating Soft Matter's 10th Anniversary: Cell division: a source of active stress in cellular monolayers.

Soft matter Royal Society of Chemistry 11:37 (2015) 7328-7336

Authors:

Amin Doostmohammadi, Sumesh P Thampi, Thuan B Saw, Chwee T Lim, Benoit Ladoux, Julia Yeomans

Abstract:

We introduce the notion of cell division-induced activity and show that the cell division generates extensile forces and drives dynamical patterns in cell assemblies. Extending the hydrodynamic models of lyotropic active nematics we describe turbulent-like velocity fields that are generated by the cell division in a confluent monolayer of cells. We show that the experimentally measured flow field of dividing Madin-Darby Canine Kidney (MDCK) cells is reproduced by our modeling approach. Division-induced activity acts together with intrinsic activity of the cells in extensile and contractile cell assemblies to change the flow and director patterns and the density of topological defects. Finally we model the evolution of the boundary of a cellular colony and compare the fingering instabilities induced by cell division to experimental observations on the expansion of MDCK cell cultures.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Intrinsic free energy in active nematics

EPL IOP Publishing 112:2 (2015) 28004-28004

Authors:

Sumesh P Thampi, Amin Doostmohammadi, Ramin Golestanian, Julia Yeomans

Abstract:

Basing our arguments on the theory of active liquid crystals, we demonstrate, both analytically and numerically, that the activity can induce an effective free energy which enhances ordering in extensile systems of active rods and in contractile suspensions of active discs. We argue that this occurs because any ordering fluctuation is enhanced by the flow field it produces. A phase diagram in the temperature-activity plane compares ordering due to a thermodynamic free energy to that resulting from the activity. We also demonstrate that activity can drive variations in concentration, but for a different physical reason that relies on the separation of hydrodynamic and diffusive time scales.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Driven active and passive nematics

Molecular Physics Taylor & Francis 113:17-18 (2015) 2656-2665

Authors:

Sumesh P Thampi, Ramin Golestanian, Julia M Yeomans
More details from the publisher

Cell division: a source of active stress in cellular monolayers

(2015)

Authors:

Amin Doostmohammadi, Sumesh P Thampi, Thuan B Saw, Chwee T Lim, Benoit Ladoux, Julia M Yeomans
More details from the publisher

Upstream swimming in microbiological flows

(2015)

Authors:

Arnold JTM Mathijssen, Tyler N Shendruk, Julia M Yeomans, Amin Doostmohammadi
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • Current page 32
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet