Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Julia Yeomans OBE FRS

Professor of Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Julia.Yeomans@physics.ox.ac.uk
Telephone: 01865 (2)76884 (college),01865 (2)73992
Rudolf Peierls Centre for Theoretical Physics, room 70.10
www-thphys.physics.ox.ac.uk/people/JuliaYeomans
  • About
  • Publications

Hotspots of boundary accumulation: dynamics and statistics of micro-swimmers in flowing films

Journal of the Royal Society Interface Royal Society 13:115 (2015) 20150936

Authors:

Arnold JTM Mathijssen, Amin Doostmohammadi, Julia Yeomans, Tyler N Shendruk

Abstract:

Biological flows over surfaces and interfaces can result in accumulation hotspots or depleted voids of microorganisms in natural environments. Apprehending the mechanisms that lead to such distributions is essential for understanding biofilm initiation. Using a systematic framework, we resolve the dynamics and statistics of swimming microbes within flowing films, considering the impact of confinement through steric and hydrodynamic interactions, flow and motility, along with Brownian and run–tumble fluctuations. Micro-swimmers can be peeled off the solid wall above a critical flow strength. However, the interplay of flow and fluctuations causes organisms to migrate back towards the wall above a secondary critical value. Hence, faster flows may not always be the most efficacious strategy to discourage biofilm initiation. Moreover, we find run–tumble dynamics commonly used by flagellated microbes to be an intrinsically more successful strategy to escape from boundaries than equivalent levels of enhanced Brownian noise in ciliated organisms.
More details from the publisher
Details from ORA
More details
More details

Thermal analog of gimbal lock in a colloidal ferromagnetic Janus rod

Physical Review Letters American Physical Society 115:24 (2015) 248301

Authors:

Julia Yeomans, Yongxiang Gao, Andrew Kaan Balin, Roel PA Dullens, Dirk GAL Aarts

Abstract:

We report an entropy-driven orientational hopping transition in a magnetically confined colloidal Janus rod. In a magnetic field, the sedimented rod randomly hops between horizontal and vertical states: the latter state comes at a substantial gravitational cost at no reduction of magnetic potential energy. The probability distribution over the angles of the rod shows that the presence of an external magnetic field leads to the emergence of a metastable vertical state separated from the ground state by an effective barrier. This barrier does not come from the potential energy but rather from the vast gain in phase space available to the rod as it approaches the vertical state. The loss of rotational degree of freedom that gives rise to this effect is a statistical mechanical analogue of the phenomenon of gimbal lock from classical mechanics.
More details from the publisher
Details from ORA

Biphasic, Lyotropic, Active Nematics

Physical Review Letters American Physical Society (APS) 113:24 (2014) 248303

Authors:

Matthew L Blow, Sumesh P Thampi, Julia M Yeomans
More details from the publisher

Active nematic materials with substrate friction.

Physical review. E, Statistical, nonlinear, and soft matter physics 90:6 (2014) 062307

Authors:

Sumesh P Thampi, Ramin Golestanian, Julia M Yeomans

Abstract:

Active turbulence in dense active systems is characterized by high vorticity on a length scale that is large compared to that of individual entities. We describe the properties of active turbulence as momentum propagation is screened by frictional damping. As friction is increased, the spacing between the walls in the nematic director field decreases as a consequence of the more rapid velocity decays. This leads to, first, a regime with more walls and an increased number of topological defects, and then to a jammed state in which the walls deliminate bands of opposing flow, analogous to the shear bands observed in passive complex fluids.
More details from the publisher
More details

Active nematic materials with substrate friction

Physical Review E American Physical Society (APS) 90:6 (2014) 062307

Authors:

Sumesh P Thampi, Ramin Golestanian, Julia M Yeomans
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • Current page 34
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet