Thermal analogue of gimbal lock in a colloidal ferromagnetic Janus rod
Physical Review Letters American Physical Society 115:24 (2015) 248301
Abstract:
We report an entropy-driven orientational hopping transition in a magnetically confined colloidal Janus rod. In a magnetic field, the sedimented rod randomly hops between horizontal and vertical states: the latter state comes at a substantial gravitational cost at no reduction of magnetic potential energy. The probability distribution over the angles of the rod shows that the presence of an external magnetic field leads to the emergence of a metastable vertical state separated from the ground state by an effective barrier. This barrier does not come from the potential energy but rather from the vast gain in phase space available to the rod as it approaches the vertical state. The loss of rotational degree of freedom that gives rise to this effect is a statistical mechanical analogue of the phenomenon of gimbal lock from classical mechanics.Celebrating Soft Matter's 10th Anniversary: Cell division: a source of active stress in cellular monolayers.
Soft matter Royal Society of Chemistry 11:37 (2015) 7328-7336
Abstract:
We introduce the notion of cell division-induced activity and show that the cell division generates extensile forces and drives dynamical patterns in cell assemblies. Extending the hydrodynamic models of lyotropic active nematics we describe turbulent-like velocity fields that are generated by the cell division in a confluent monolayer of cells. We show that the experimentally measured flow field of dividing Madin-Darby Canine Kidney (MDCK) cells is reproduced by our modeling approach. Division-induced activity acts together with intrinsic activity of the cells in extensile and contractile cell assemblies to change the flow and director patterns and the density of topological defects. Finally we model the evolution of the boundary of a cellular colony and compare the fingering instabilities induced by cell division to experimental observations on the expansion of MDCK cell cultures.Intrinsic free energy in active nematics
EPL IOP Publishing 112:2 (2015) 28004-28004