SURFACE EVOLVER SIMULATIONS OF DROPS ON MICROPOSTS
INTERNATIONAL JOURNAL OF MODERN PHYSICS C 23:8 (2012) ARTN 1240013
Confining blue phase colloids to thin layers
Soft Matter 7:21 (2011) 10144-10150
Abstract:
Colloidal assembly in strongly confined cholesteric structures is demonstrated using phenomenological modelling. Particle trapping sites and trapping potentials, which are intrinsically imposed by the strongly anisotropic orientational profile of the confined blue phases, are calculated. Locations of the trapping sites and profiles of the trapping potentials are shown to depend importantly on the particle size, and the array of trapping sites can even change symmetry. Trapping sites provide robust binding of various colloidal structures with binding energy of ∼100kT for ∼100 nm particles. Maximising the filling of the trapping sites by particles proves to lower the full free energy of the system, offering means for thermodynamic stabilisation of confined blue phases. Finally, we present formation of disclination cages, formed as a three-dimensional closed network of defect lines surrounding sufficiently large particles with strong homeotropic anchoring. © 2011 The Royal Society of Chemistry.Length-dependent translocation of polymers through nanochannels
(2011)
Lévy fluctuations and mixing in dilute suspensions of algae and bacteria.
J R Soc Interface 8:62 (2011) 1314-1331
Abstract:
Swimming micro-organisms rely on effective mixing strategies to achieve efficient nutrient influx. Recent experiments, probing the mixing capability of unicellular biflagellates, revealed that passive tracer particles exhibit anomalous non-Gaussian diffusion when immersed in a dilute suspension of self-motile Chlamydomonas reinhardtii algae. Qualitatively, this observation can be explained by the fact that the algae induce a fluid flow that may occasionally accelerate the colloidal tracers to relatively large velocities. A satisfactory quantitative theory of enhanced mixing in dilute active suspensions, however, is lacking at present. In particular, it is unclear how non-Gaussian signatures in the tracers' position distribution are linked to the self-propulsion mechanism of a micro-organism. Here, we develop a systematic theoretical description of anomalous tracer diffusion in active suspensions, based on a simplified tracer-swimmer interaction model that captures the typical distance scaling of a microswimmer's flow field. We show that the experimentally observed non-Gaussian tails are generic and arise owing to a combination of truncated Lévy statistics for the velocity field and algebraically decaying time correlations in the fluid. Our analytical considerations are illustrated through extensive simulations, implemented on graphics processing units to achieve the large sample sizes required for analysing the tails of the tracer distributions.Anisotropic imbibition on surfaces patterned with polygonal posts.
Philos Trans A Math Phys Eng Sci 369:1945 (2011) 2519-2527