Hydrodynamic synchronization at low Reynolds number
Soft Matter 7:7 (2011) 3074-3082
Abstract:
After a long gap following the classic work of Taylor, there have recently been several studies dealing with hydrodynamic synchronization. It is now apparent that synchronization driven by hydrodynamic interactions is not only possible, but relevant to the efficiency of pumping by arrays of cilia and to bacterial swimming. Recent work has included experiments demonstrating synchronization, both in model systems and between bacterial flagella. The effect has been demonstrated in model swimmers and pumps, and large scale simulations have been used to investigate synchronization of cilia and of sperm cells. In this review article, we summarize the various experimental and theoretical studies of hydrodynamic synchronization, and put them in a framework which draws parallels between the different systems and suggests useful directions for further research. © The Royal Society of Chemistry 2011.Confinement of knotted polymers in a slit
MOLECULAR PHYSICS 109:7-10 (2011) 1289-1295
Three-dimensional colloidal crystals in liquid crystalline blue phases.
Proc Natl Acad Sci U S A 108:13 (2011) 5188-5192
Abstract:
Applications for photonic crystals and metamaterials put stringent requirements on the characteristics of advanced optical materials, demanding tunability, high Q factors, applicability in visible range, and large-scale self-assembly. Exploiting the interplay between structural and optical properties, colloidal lattices embedded in liquid crystals (LCs) are promising candidates for such materials. Recently, stable two-dimensional colloidal configurations were demonstrated in nematic LCs. However, the question as to whether stable 3D colloidal structures can exist in an LC had remained unanswered. We show, by means of computer modeling, that colloidal particles can self-assemble into stable, 3D, periodic structures in blue phase LCs. The assembly is based on blue phases providing a 3D template of trapping sites for colloidal particles. The particle configuration is determined by the orientational order of the LC molecules: Specifically, face-centered cubic colloidal crystals form in type-I blue phases, whereas body-centered crystals form in type-II blue phases. For typical particle diameters (approximately 100 nm) the effective binding energy can reach up to a few 100 k(B)T, implying robustness against mechanical stress and temperature fluctuations. Moreover, the colloidal particles substantially increase the thermal stability range of the blue phases, for a factor of two and more. The LC-supported colloidal structure is one or two orders of magnitude stronger bound than, e.g., water-based colloidal crystals.International liquid crystal conference 2010: Across borders and multiscales
Liquid Crystals Today 20:1 (2011) 31-33
Confinement of knotted polymers in a slit
MOLECULAR PHYSICS 109:7-10 (2011) PII 936987418