Hydrodynamic Interactions at Low Reynolds Number
Experimental Mechanics 50:9 (2010) 1283-1292
Abstract:
We consider the hydrodynamic interactions of low Reynolds number microswimmers, presenting a review of recent work based upon models of linked sphere swimmers. Particular attention is paid to those aspects that are generic, applicable to all microswimmers and not only to the simple models considered. The importance of the relative phase in swimmer-swimmer interactions is emphasised, as is the role of simple symmetry arguments in both understanding and constraining the hydrodynamic properties of microswimmers. © 2010 Society for Experimental Mechanics.Blue phases as templates for 3D colloidal photonic crystals
Proceedings of SPIE - The International Society for Optical Engineering 7775 (2010)
Abstract:
We examine the possibilities to use the intrinsic 3D defect networks in blue phases I and II as arrays of trapping sites for colloidal particles. Our approach based on the phenomenological Landau-de Gennes description and topological theory has proven to be extremely useful in dealing with nematic colloids. A perturbed orientational order leads to effective anisotropic long range inter-particle coupling and consequently to numerous organizations of colloidal particles not present in simple liquids. Recent developments that led to the blue phases with extended stability range make them more attractive for use. In these phases the competition between nematic ordering and intrinsic tendency to form double twisted deformations yields complex director patterns and disclination networks. The spatially deformed order that mediates the attraction of particles to the network sets the ground for a possible self-assembling of 3D superstructures with extended stability ranges. Here we first describe the trapping mechanism on the case of a single discilination line and then use the results to demonstrate the trapping in the blue phase II. Effects of particle sizes ranging from submicron to 50 nanometers are examined. The assembling in blue phases is expected to form photonic crystals that can be easily manipulated via affecting the liquid crystal matrix and/or colloidal particles. © 2010 SPIE.Superhydrophobicity on hairy surfaces.
Langmuir 26:20 (2010) 16071-16083