Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Julia Yeomans OBE FRS

Professor of Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Julia.Yeomans@physics.ox.ac.uk
Telephone: 01865 (2)76884 (college),01865 (2)73992
Rudolf Peierls Centre for Theoretical Physics, room 70.10
www-thphys.physics.ox.ac.uk/people/JuliaYeomans
  • About
  • Publications

Polymer translocation: The effect of backflow

JOURNAL OF CHEMICAL PHYSICS 123:23 (2005) ARTN 234903

Authors:

I Ali, JM Yeomans
More details from the publisher
More details

Switching hydrodynamics in multi-domain, twisted nematic, liquid-crystal devices

EUROPHYSICS LETTERS 71:4 (2005) 604-610

Authors:

D Marenduzzo, E Orlandini, JM Yeomans
More details from the publisher

Dynamics of polymer packaging.

J Chem Phys 121:17 (2004) 8635-8641

Authors:

I Ali, D Marenduzzo, JM Yeomans

Abstract:

We use the stochastic rotation dynamics algorithm to investigate the packaging of flexible and semiflexible polymers into a capsid that is permeable to solvent molecules. The model takes into account hydrodynamic interactions arising due to local flow. The flexible chain maintains a random configuration as it is being fed into the capsid, in contrast to the semiflexible chain, whose configuration is initially spool-like, becoming more random at high packing. We measure the packing rate, which is found to decrease with the percentage of the chain packed and highlight the difference between the flexible and semiflexible chains. Reflecting experiments, we find pauses in the packing process for individual chains as the motor loses grip of the fluctuating beads. We also find that hydrodynamics is important, in that the packaging rate is faster when flow is included.
More details from the publisher
More details

Stripe formation in differentially forced binary systems

(2004)

Authors:

CM Pooley, JM Yeomans
More details from the publisher

Stripe formation in differentially forced binary systems.

Phys Rev Lett 93:11 (2004) 118001

Authors:

CM Pooley, JM Yeomans

Abstract:

We consider pattern formation in periodically forced binary systems. In particular, we focus on systems in which the two species are differentially forced, one being accelerated with respect to the other. Using a continuum model consisting of two isothermal ideal gases which interact via a frictional force we demonstrate analytically that stripes form spontaneously above a critical forcing amplitude. The wavelength of the stripes is found to be close to the wavelength of sound in the limit of small viscosity. The results are confirmed numerically. We suggest that the same mechanism may contribute to the formation of stripes in experiments on horizontally oscillated granular mixtures.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 70
  • Page 71
  • Page 72
  • Page 73
  • Current page 74
  • Page 75
  • Page 76
  • Page 77
  • Page 78
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet