Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Julia Yeomans OBE FRS

Professor of Physics

Research theme

  • Biological physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
Julia.Yeomans@physics.ox.ac.uk
Telephone: 01865 (2)76884 (college),01865 (2)73992
Rudolf Peierls Centre for Theoretical Physics, room 70.10
www-thphys.physics.ox.ac.uk/people/JuliaYeomans
  • About
  • Publications

Periodic Droplet Formation in Chemically Patterned Microchannels

(2003)

Authors:

Olga Kuksenok, David Jasnow, Julia Yeomans, Anna C Balazs
More details from the publisher

Hydrodynamics of domain growth in nematic liquid crystals

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 67:5 1 (2003)

Authors:

G Tóth, C Denniston, JM Yeomans

Abstract:

A study was conducted on the growth of a domain of a nematic liquid crystal at the expense of a second domain with a different director orientation. As such, defects form at the walls between domains and their dynamics was vital in controlling the rate of growth. It was found that a spatial anisotropy in domain growth can result from backflow and discuss how the wall speed varies with the material parameters of the liquid crystal the geometry and the surface properties of the confining cell, and an external electric field.

Hydrodynamics of domain growth in nematic liquid crystals.

Phys Rev E Stat Nonlin Soft Matter Phys 67:5 Pt 1 (2003) 051705

Authors:

Géza Tóth, Colin Denniston, JM Yeomans

Abstract:

We study the growth of aligned domains in nematic liquid crystals. Results are obtained solving the Beris-Edwards equations of motion using the lattice Boltzmann approach. Spatial anisotropy in the domain growth is shown to be a consequence of the flow induced by the changing order parameter field (backflow). The generalization of the results to the growth of a cylindrical domain, which involves the dynamics of a defect ring, is discussed.
More details from the publisher
More details

Droplet Spreading on Heterogeneous Surfaces using a Three-Dimensional Lattice Boltzmann Model

(2003)

Authors:

A Dupuis, AJ Briant, CM Pooley, JM Yeomans
More details from the publisher

Transport coefficients of a mesoscopic fluid dynamics model

(2003)

Authors:

N Kikuchi, CM Pooley, JF Ryder, JM Yeomans
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 73
  • Page 74
  • Page 75
  • Page 76
  • Current page 77
  • Page 78
  • Page 79
  • Page 80
  • Page 81
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet