Stripe formation in differentially forced binary systems.
Phys Rev Lett 93:11 (2004) 118001
Abstract:
We consider pattern formation in periodically forced binary systems. In particular, we focus on systems in which the two species are differentially forced, one being accelerated with respect to the other. Using a continuum model consisting of two isothermal ideal gases which interact via a frictional force we demonstrate analytically that stripes form spontaneously above a critical forcing amplitude. The wavelength of the stripes is found to be close to the wavelength of sound in the limit of small viscosity. The results are confirmed numerically. We suggest that the same mechanism may contribute to the formation of stripes in experiments on horizontally oscillated granular mixtures.Lattice Boltzmann algorithm for three-dimensional liquid-crystal hydrodynamics
PHILOS T ROY SOC A 362:1821 (2004) 1745-1754
Abstract:
We describe a lattice Boltzmann algorithm to simulate liquid-crystal hydrodynamics in three dimensions. The equations of motion are written in terms of a tensor order parameter. This allows both the isotropic and the nematic phases to be considered. Backflow effects and the hydrodynamics of topological defects are naturally included in the simulations, as are viscoelastic effects such as shear-thinning and shear-banding. We describe the implementation of velocity boundary conditions and show that the algorithm can be used to describe optical bounce in twisted nematic devices and secondary flow in sheared nematics with an imposed twist.Lattice Boltzmann modelling of droplets on chemically heterogeneous surfaces
FUTURE GENER COMP SY 20:6 (2004) 993-1001
Abstract:
We use a three-dimensional lattice Boltzmann model to investigate the spreading of mesoscopic droplets on homogeneous and heterogeneous surfaces. On a homogeneous substrate the base radius of the droplet grows with time as t(0.28) for a range of viscosities and surface tensions. The time evolutions collapse onto a single curve as a function of a dimensionless time. On a surface comprising of alternate lyophobic and lyophilic stripes the wetting velocity is anisotropic and the equilibrium shape of the droplet reflects the wetting properties of the underlying substrate. (C) 2003 Elsevier B.V. All rights reserved.Interplay between shear flow and elastic deformations in liquid crystals.
J Chem Phys 121:1 (2004) 582-591