Searches for Non-Standard-Model Higgs Bosons at the Tevatron

(2008)

Summary of the Electroweak and Beyond the Standard Model Working Group

(2008)

Authors:

Christopher Hays, Michael Krämer, David M South, Aleksander Filip Żarnecki

The ATLAS and CMS Plans for the LHC Luminosity Upgrade

ArXiv 0809.0671 (2008)

Abstract:

In January 2007 the CERN director general announced the plan for the staged upgrade of the LHC luminosity. The plan foresees a phase 1 upgrade reaching a peak luminosity of $3 \times 10^{34}$ cm$^{-2}$s$^{-1}$ followed by phase reaching up to $ 10^{35}$ cm$^{-2}$s$^{-1}$. We discuss the physics potential and the experimental challenges of an upgraded LHC running. The detector R&D needed to operate ATLAS and CMS in a very high radiation environment and the expected detector performance are also discussed.

What HERA may provide ?

(2008)

Authors:

Hannes Jung, Albert De Roeck, Jochen Bartels, Olaf Behnke, Johannes Blumlein, Stanley Brodsky, Amanda Cooper-Sarkar, Michal Deak, Robin Devenish, Markus Diehl, Thomas Gehrmann, Guenter Grindhammer, Gosta Gustafson, Valery Khoze, Albert Knutsson, Max Klein, Frank Krauss, Krzysztof Kutak, Eric Laenen, Leif Lonnblad, Leszek Motyka, Paul R Newman, Fred Olness, Daniel Pitzl, Marta Ruspa, Agustin Sabio Vera, Gavin P Salam, Thomas Schorner-Sadenius, Mark Strikman

Deep inelastic inclusive and diffractive scattering at Q2 values from 25 to 320 GeV2 with the ZEUS forward plug calorimeter

Nuclear Physics B 800:1-2 (2008) 1-76

Authors:

S Chekanov, M Derrick, S Magill, B Musgrave, D Nicholass, J Repond, R Yoshida, MCK Mattingly, M Jechow, N Pavel, P Antonioli, G Bari, L Bellagamba, D Boscherini, A Bruni, G Bruni, F Cindolo, M Corradi, G Iacobucci, A Margotti, R Nania, A Polini, S Antonelli, M Basile, M Bindi, L Cifarelli, A Contin, S De Pasquale, G Sartorelli, A Zichichi, D Bartsch, I Brock, H Hartmann, E Hilger, HP Jakob, M Jüngst, AE Nuncio-Quiroz, E Paul, R Renner, U Samson, V Schönberg, R Shehzadi, M Wlasenko, NH Brook, GP Heath, JD Morris, M Capua, S Fazio, A Mastroberardino, M Schioppa, G Susinno, E Tassi, JY Kim, ZA Ibrahim, B Kamaluddin, WAT Wan Abdullah, Y Ning, Z Ren, F Sciulli, J Chwastowski, A Eskreys, J Figiel, A Galas, M Gil, K Olkiewicz, P Stopa, L Zawiejski, L Adamczyk, T Bołd, I Grabowska-Bołd, D Kisielewska, J Łukasik, M Przybycień, L Suszycki, A Kotański, W Słomiński, U Behrens, C Blohm, A Bonato, K Borras, R Ciesielski, N Coppola, V Drugakov, S Fang, J Fourletova, A Geiser, P Göttlicher, J Grebenyuk, I Gregor, T Haas, W Hain, A Hüttmann, B Kahle, M Kasemann, II Katkov, U Klein, U Kötz, H Kowalski, H Lim, E Lobodzinska

Abstract:

Deep inelastic scattering and its diffractive component, e p → e′ γ* p → e′ X N, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb-1. The MX method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy W (37-245 GeV), photon virtuality Q2 (20-450 GeV2) and mass MX (0.28-35 GeV) is covered. The diffractive cross section for 2 < MX < 15 GeV rises strongly with W, the rise becoming steeper as Q2 increases. The data are also presented in terms of the diffractive structure function, F2D (3), of the proton. For fixed Q2 and fixed MX, xP F2D (3) shows a strong rise as xP → 0, where xP is the fraction of the proton momentum carried by the pomeron. For Bjorken-x < 1 × 10-3, xP F2D (3) shows positive log Q2 scaling violations, while for x ≥ 5 × 10-3 negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken. © 2008 Elsevier B.V. All rights reserved.